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1  | INTRODUC TION

Species distribution models (SDMs) encompass a variety of methods 
used to predict the occurrence of a species from the environmental 
conditions at a given site, thus providing a proxy of habitat suitability 
(Warren & Seifert,  2011). These methods are increasingly used in 
various fields of ecology (Guisan & Thuiller, 2005), often with the 
aim of guiding decision-making in species conservation management 

and planning (Guisan et al., 2013). Indeed, SDMs represent a crucial 
and cost-effective tool to identify current important areas for threat-
ened species, and to forecast ecosystem impacts of rapid human-in-
duced environmental change (Beaumont et al., 2016; Elith, Kearney, 
& Phillips, 2010; Franklin, 2013; Guillera-Arroita et al., 2015; Guisan 
et al., 2013; Schwartz, Iverson, Prasad, Matthews, & O’Connor, 2006). 
Among the variety of available algorithms, machine learning ap-
proaches are becoming increasingly popular, facilitated by the recent 
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Abstract
Balancing model complexity is a key challenge of modern computational ecology, par-
ticularly so since the spread of machine learning algorithms. Species distribution mod-
els are often implemented using a wide variety of machine learning algorithms that 
can be fine-tuned to achieve the best model prediction while avoiding overfitting. We 
have released SDMtune, a new R package that aims to facilitate training, tuning, and 
evaluation of species distribution models in a unified framework. The main innovations 
of this package are its functions to perform data-driven variable selection, and a novel 
genetic algorithm to tune model hyperparameters. Real-time and interactive charts are 
displayed during the execution of several functions to help users understand the ef-
fect of removing a variable or varying model hyperparameters on model performance. 
SDMtune supports three different metrics to evaluate model performance: the area 
under the receiver operating characteristic curve, the true skill statistic, and Akaike's 
information criterion corrected for small sample sizes. It implements four statistical 
methods: artificial neural networks, boosted regression trees, maximum entropy mod-
eling, and random forest. Moreover, it includes functions to display the outputs and 
create a final report. SDMtune therefore represents a new, unified and user-friendly 
framework for the still-growing field of species distribution modeling.
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availability of high computational power, and due to their ability to 
fit complex nonlinear relationships without requiring an a priori defi-
nition of a data model (Breiman, 2001). However, there still are many 
decisions to be made at various steps of the model building process 
that can influence the final output (Guisan & Thuiller, 2005). For ex-
ample, the amount of complexity should be cautiously controlled to 
avoid models that underfit or overfit the underlying data (Merow 
et al., 2014; Warren & Seifert, 2011).

In general, the amount of complexity of a model depends on 
the number of chosen predictors and their transformations (Merow 
et al., 2014). Moreover, each machine learning algorithm has a se-
ries of parameters, known as hyperparameters. In contrast to model 
parameters, which are estimated from the data during model train-
ing, hyperparameters have a fixed value that must be defined before 
model training. Even if most machine learning algorithms have pre-
defined default values, the optimal value of each hyperparameter is 
unknown, as it is specific to the modeling problem and the dataset. 
However, its choice affects model complexity and/or performance. 
For example, in a neural network, the maximum number of itera-
tions controls the amount of iterations executed by its optimization 
algorithm. This value does not affect model complexity but if it is 
too low the algorithm might not converge, thus generating a model 
with lower performance. On the other hand, increasing the size of 
the hidden layer increases the number of parameters of the model 
and consequently its complexity, which in turn might affect its per-
formance. In a Maxent model (Phillips, Anderson, & Schapire, 2006), 
the amount of regularization controls overfitting by shrinking some 
parameters toward zero which consequently penalizes model com-
plexity. Although several authors have stressed the importance of 
inspecting the hyperparameters because default settings did not al-
ways yield an optimal performance (Elith et al., 2010; Merow, Smith, 
& Silander, 2013; Warren & Seifert, 2011; Warren, Wright, Seifert, 
& Shaffer,  2014), the time-consuming task of comparing models 
trained with a multitude of possible combinations of hyperparame-
ters' values (e.g., Zeng, Low, & Yeo, 2016) may discourage many re-
searchers from doing so in practice.

In order to optimize model complexity and performance, both 
the predictors used to build the model and the values of hyper-
parameters should be carefully selected which represents a chal-
lenge given the often numerous possible options. The new package 
SDMtune described here offers a framework to build and systemat-
ically tune SDMs. The package includes utilities that help R users (R 
Core Team, 2019) all along the analysis process, from data prepara-
tion to graphical representation of the results and reporting. In par-
ticular, it contains dedicated functions to perform variable selection 
and hyperparameter tuning. Hyperparameter tuning, also called hy-
perparameter optimization, is a process usually based on a trial and 
error experiment during which several models with different values 
of the hyperparameters are trained and evaluated in order to iden-
tify which combination yields the best performance. The simplest 
algorithm for hyperparameter tuning, grid search, trains and com-
pares models with all possible combinations of the defined hyper-
parameters' values and can thus be a very time-consuming process. 

While other available R packages contain functions for tuning one 
(e.g., ENMeval (Muscarella et al., 2014), wallace (Kass et al., 2018)), 
kuenm (Cobos, Townsend Peterson, Barve, & Osorio-Olvera, 2019) 
or several statistical model types (e.g., biomod2 (Thuiller, Georges, & 
Breiner, 2019), sdm (Naimi & Araújo, 2016), zoon (Golding et al., 2018) 
and caret (Kuhn et al., 2019)), functions for data-driven variable se-
lection are not always included and the hyperparameter tuning is 
always based on grid search or random search algorithms. SDMtune 
offers an alternative that relies on a genetic algorithm for explor-
ing the hyperparameter configuration space (Lessmann, Stahlbock, 
& Crone, 2005; Young, Rose, Karnowski, Lim, & Patton, 2015), ap-
plicable to the most commonly used SDM algorithms. This method 
significantly reduces the time required to find a near-optimal or the 
optimal model configuration. As an additional advantage, all func-
tions for selecting the variables and tuning the hyperparameters are 
supported by an interactive real-time displayed chart that shows the 
change in model performance during the different steps of function 
execution. The chart is created in the RStudio (RStudio Team, 2018) 
viewer pane using the open source library Chart.js (https://www.
chart​js.org), thus facilitating the understanding of the underlying al-
gorithm action through a graphical representation of the output and 
avoiding the user's feeling of handling a black box that usually comes 
up when dealing with complex methods.

2  | PACK AGE WORKFLOW AND 
DESCRIPTION

In this section, we present a possible use of the SDMtune package 
that covers a complete analysis in seven steps (Figure  1): (1) pre-
paring data for the analysis; (2) training and evaluating a model; (3) 
performing variable selection; (4) tuning model hyperparameters; (5) 
optimizing model parsimony; (6) evaluating the final model; and (7) 
generating an output report. Users can combine the available func-
tions in a way that best suits them. For example, step 4 could be 
repeated after step 5 to further fine-tune model hyperparameters.

2.1 | Preparing data for the analysis

SDMtune uses a special object to compile the data for the analysis. 
This object, called SWD (samples with data, a format similar to the 
one used by the Maxent software), bundles all the information re-
lated to each record (name of the species, coordinates of the spe-
cies' presence and absence/background locations, and the values of 
the environmental variables at these locations), thereby reducing the 
risk of mistakes in further analyses.

Before starting the analysis the user should decide which eval-
uation strategy to use. SDMtune provides two methods: (1) simple 
hold-out validation and (2) k-fold cross-validation. The k folds for the 
cross-validation can be created either randomly, using the provided 
randomFolds function, or spatially/environmentally clustered, using 
functions included in the packages ENMeval and blockCV (Valavi, Elith, 

https://www.chartjs.org
https://www.chartjs.org
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Lahoz-Monfort, & Guillera-Arroita, 2019): In this case, SDMtune will 
internally convert the folds into the required format. The selected 
validation strategy is used to perform the variable selection and/or 
tune the model hyperparameters in order to optimize the model per-
formance and address overfitting. When tuning the hyperparameters, 

several models with different configurations are trained and evaluated 
in an iterative process that aims at improving the predictive perfor-
mance on the validation dataset, or—if cross-validation is used—on the 
arithmetic mean of the evaluation metric across all folds. During this 
process, part of the information contained in the validation dataset 

F I G U R E  1   Package workflow illustrating the seven steps of the model tuning process. The functions required to perform the different 
steps are given in the headline. The different colors indicate different types of steps with: orange: preparation of data and results; blue: 
model training and evaluation; yellow: variable selection; green: hyperparameter tuning. Dashed connections represent an iterative process
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Note: The meaning of each hyperparameter can be found in the respective package documentation 
and default values, when available, are provided in the last column.
a(l) linear, (q) quadratic, (p) product, and (h) hinge. 

TA B L E  1   Overview of the 
hyperparameters that can be tuned per 
statistical method and underlying package
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is inevitably transferred into the trained model, even if the validation 
data are not directly used to train the model (Chollet & Allaire, 2018; 
Müller & Guido, 2016). It is therefore advisable to hold apart an in-
dependent partition of the data, that is, the testing dataset, to ob-
tain an unbiased evaluation of the final model (Hastie, Tibshirani, & 
Friedman, 2009; Merow et al., 2014).

The selection of a metric and a validation strategy should there-
fore be done early in the model tuning process, because it has im-
plications on how the data should be split before training the first 
model. Note that the AICc score is computed using all the obser-
vation locations (Warren & Seifert, 2011) and does not require to 
partition the observation data into training and validation.

2.2 | Training and evaluating a model

Currently, four machine learning methods are available (Table  1): 
artificial neural networks (ANN), boosted regression trees (BRT), 
maximum entropy (ME), and random forest (RF). Two different im-
plementations of the ME method can be selected: “Maxent” to use 
the Java implementation (version 3.4.1 or higher) and “Maxnet” for 
the R implementation using the maxnet package (Phillips, Anderson, 
Dudík, Schapire, & Blair, 2017; Phillips et al., 2006). There are spe-
cific arguments of the train function that can be used to set the 
model hyperparameters. By default, these arguments are set to the 
same values as implemented in the dependent packages.

A trained model can be evaluated using one of the three imple-
mented metrics: (1) the area under the receiver operating characteris-
tic (ROC) curve (AUC) (Fielding & Bell, 1997), (2) the true skill statistic 
(TSS) (Allouche, Tsoar, & Kadmon, 2006), and (3) Akaike's information 
criterion corrected for small sample sizes (AICc, only for ME method) 
(Burnham & Anderson, 2004; Warren & Seifert, 2011). It should be 
noted that AICc is a relative measure describing the model fit in rela-
tion to complexity (parsimony) but holds no information on predictive 
performance. It can thus only be used to compare competing models 
trained using the same data but not for final model evaluation.

2.3 | Performing the variable selection

When the environmental variables used to train the model are highly 
correlated, it is difficult to interpret the model output, especially the 
relative importance of the variables and their response curves. A com-
mon practice is thus to select a subset of variables among which col-
linearity falls below a predefined threshold. A reasonable approach to 
remove highly correlated variables is to base the selection on expert 
knowledge, that is, retaining the environmental variable that is most 
likely to be ecologically meaningful for the target species. When this is 
unknown, an alternative approach is a “data-driven” variable selection 
that uses the information contained in the data to select the variable 
with the highest explanatory value among those that are highly corre-
lated. The function varSel iterates through several steps: Starting from 
a trained model, it checks if the variable ranked as the most important 

(using the permutation importance or, optionally for Maxent models, 
the percent contribution (Phillips, 2017a)) is correlated with any of the 
other variables, using a given correlation criterion (e.g., Spearman's 
rho) and correlation threshold. If so, a leave-one-out Jackknife test is 
performed, starting with the full model, and among all correlated vari-
ables the one that decreases least model performance on the training 
dataset is discarded. A new model without this variable is then trained 
and again checked for highly correlated variables. The process is re-
peated until the correlations among all retained variables fall below 
the predefined threshold. During the execution of the function varSel, 
a real-time chart shows which variable is removed and the relative ef-
fect on the model performance.

2.4 | Tuning the model hyperparameters

Tuning the model hyperparameters is a long process, as it requires 
testing many combinations of the hyperparameters in order to iden-
tify the best performing model. The simplest tuning method, known 
as “grid search,” is implemented in the function gridSearch. The user 
has the possibility to define a set of possible values for one or sev-
eral hyperparameters, out of which the function will create all pos-
sible combinations. The function also returns the value of the chosen 
evaluation metric so that the user can see the effect of varying the 
hyperparameters on the model performance.

Grid search is based on a brute force method that results in a very 
time-consuming process with high computational costs. A possible al-
ternative is to randomly select some hyperparameters' combinations 
among the user-defined values (Bergstra & Bengio,  2012). This ap-
proach is implemented in the randomSearch function that usually finds 
a better performing model compared with the starting one. However, 
the disadvantage of the grid search and random search methods is that 
they do not use any information acquired during the iteration through 
the hyperparameter configuration space in order to improve the model 
performance. The function optimizeModel applies a genetic algorithm 
(Holland, 1992) instead, to more quickly optimize the combination of the 
hyperparameters (an example of a genetic algorithm used to define hy-
perparameters and architecture of a deep neural network is presented 
by Miikkulainen et al. (2018)). The algorithm (Figure 2) starts by gener-
ating a random initial “population” of models (using the randomSearch 
algorithm), with a given “population size". The “fitness” of the popula-
tion is measured with the chosen evaluation metric computed on the 
validation dataset and models are ranked accordingly. During the evalu-
ation of the “fitness,” underfitting is controlled by ensuring that models 
for which the evaluation metric computed for the validation dataset is 
higher than the one computed for the training dataset are ranked in the 
last positions. At this point starts, the selection process during which 
some models (“individuals”) are selected according to their “fitness” 
from the initial “population” to create the first “generation.” There are 
two selection criteria. At first, a predefined proportion of the “fittest” 
models (i.e., models ranked in the first positions) is retained. Afterward, 
a small portion of the poor performing models (i.e., those not selected 
as “fittest”) is randomly retained in order to keep more variation in the 
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population and reduce the possibility that the algorithm falls in a local 
optimum. The retained models are then submitted to the optimization 
process: they are “bred” (i.e., combined) to create other "individuals" 
and to reach again the predefined “population” size. In this process, 
two models, called “parents,” are randomly selected from the retained 
models (“selected individuals”) to “breed” and generate a “child.” This 
new model will randomly inherit a value for each hyperparameter from 
one of the “parents,” a process called “crossover.” A “mutation” chance 
with a predefined probability is added to increase the variation in the 
population. When the “mutation” is triggered one of the model's hy-
perparameter is randomly selected and its value is randomly sampled 
from those available but not included in the “parents.” Once the pop-
ulation reaches the defined size, the “fitness” is calculated again, and 
the process is repeated for the number of generations specified in the 

function. The user can set all the arguments: population size, number 
of generations, fractions of both best and worst performing models to 
be retained at each generation as well as the probability of mutation 
during crossover episodes, but default values—that will work in most 
cases—are also defined. All the functions described in this section come 
with a real-time chart showing the model performance while the algo-
rithm is running in the background.

2.5 | Optimizing model parsimony

As soon as an optimal hyperparameter combination has been 
selected, we may want to reduce model complexity by remov-
ing some environmental variables ranked as less important. 

F I G U R E  2   Flowchart illustrating the steps of the genetic algorithm implemented in the function optimizeModel, with orange ovals 
representing the begin and the end of the algorithm, blue boxes the main operations executed by the algorithm, and the green hexagons the 
iteration loops. In gray are provided the default values used by the function, with “size” indicating the initial population size; “keep best” the 
proportion of best models retained; “keep random” the proportion of less performing models retained; “mutation chance” the probability 
that a mutation event occurs. Keep best and keep random are provided as proportion of the initial population size. The dotted box shows an 
example of crossover during which two models, randomly selected from the selected "individuals", are combined to generate a child model 
that inherits the first and third hyperparameters' values from Model 2 and the second from Model 1. When the number of generations is 
zero, the flowchart represents the algorithm implemented in the function randomSearch
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The function reduceVar automates this with two alternative ap-
proaches: (a) removing all the variables with an importance lower 
than a given threshold in a stepwise fashion, starting from the vari-
able with the lowest importance; (b) removing the variables only if 
the model performance does not decrease compared to the initial 
model, according to a given evaluation metric. In the second case, 
a leave-one-out Jackknife test is performed. If removing one of the 
variables ranked below the given threshold does not decrease the 
performance of the model on the validation dataset compared to 
the initial model, that variable is discarded. A new model, trained 
without this variable, is checked again with the Jackknife test, and 
the process is repeated until all the variables with an importance 
lower than the given threshold are either retained or discarded. 
A real-time chart showing the removed variable together with its 
relative effect on model performance is generated during the ex-
ecution of the function.

2.6 | Evaluating the final model

At this point, after the variable set has been optimized (varSel and 
reduceVar) and the hyperparameters of the model have been tuned 
(gridSearch, randomSearch, or optimizeModel) the model can be 
evaluated on the held apart testing dataset, which was never used 
during the tuning procedure, using one of the functions that com-
pute the chosen metric (i.e., AUC or TSS). Another possibility would 
be to train a new model using the selected variables and hyperpa-
rameter combinations with the full dataset (i.e., without applying 
cross-validation or data partitioning) and evaluate it on the held 
apart testing dataset (Chollet & Allaire, 2018). This way the model 
can avail of a greater amount of information and might thus be able 
to generalize better.

2.7 | Creating the output

There are several functions for visualizing the model results and 
predictions. The user can plot the response curves, the variable im-
portance, the ROC curve, project the predicted relative probability 
of species occurrence to the extent of the environmental variables, 

plot and save the results as a map with either continuous (rela-
tive occurrence probabilities) or binary (presence-absence) values 
based on various threshold values. SDMtune implements its own 
algorithm to make predictions for “Maxent” models without call-
ing the Java software. This results in a much faster execution that 
allows considerably speeding up projections, which is particularly 
useful when models are evaluated using the AICc, as this metric 
requires computing the Maxent raw output for the full geographic 
extent of the environmental variables. The prediction produced by 
our algorithm may—in some cases—differ marginally from the out-
put of the Java implementation, which could result in only slightly 
different prediction values. Finally, the modelReport function cre-
ates a report similar to the one produced by the Maxent software, 
for all methods.

3  | PERFORMANCE A SSESSMENT OF 
GENETIC ALGORITHM

We evaluated the performance of the genetic algorithm in terms of 
time-saving and model accuracy for the four SDM-methods avail-
able in SDMtune by comparing the output of the optimizeModel and 
gridSearch functions. We used the virtualSp dataset provided with 
the package. This dataset contains simulated presence, absence, 
and background locations generated with the package virtualspe-
cies (Leroy, Meynard, Bellard, & Courchamp,  2016). For artificial 
neural network, boosted regression trees, and random forest we 
used the presence and absence datasets, while for the maximum 
entropy method we used the presence and background datasets. 
The maximum entropy method was performed with the “Maxnet” 
implementation. In all cases, a 10-fold cross-validation was used as 
validation strategy and the AUC was used as evaluation metric. As 
first step, we trained a model with default hyperparameters' values 
(for artificial neural network we used an inner layer of a size equal 
to the number of environmental variables), and then executed the 
two functions testing 1200 possible hyperparameters' combinations 
(Table  A1, for the optimizeModel function we used default argu-
ments). The results of the analysis are presented in Table  2. In all 
cases, the optimizeModel functions found a near-optimal solution in 
a significantly reduced amount of time.

TA B L E  2   Performance assessment of the gridSearch compared to the optimizeModel function for model tuning regarding execution time 
(expressed as HH:MM:SS) and evaluation metric (on the training dataset “Train AUC,” the validation dataset “Val AUC,” given as arithmetic 
mean across the folds of a 10-fold cross-validation) for the four methods implemented in SDMtune

Method

Default model Genetic algorithm Grid search

Train AUC Val AUC Train AUC Val AUC Time Train AUC Val AUC Time

ANN 0.8600 0.8619 0.9839 0.9590 00:11:44 0.9814 0.9615 05:51:33

BRT 0.9873 0.9750 0.9905 0.9779 00:01:33 0.9892 0.9787 00:29:45

RF 1 0.9724 1 0.9740 00:02:16 1 0.9735 00:48:03

Maxnet 0.8681 0.8561 0.8710 0.8565 00:17:49 0.8702 0.8567 05:01:21

Note: Models were trained using the virtualSp dataset available with the package and 1200 possible hyperparameters' combinations. Presence and 
background locations were used for the Maxnet method, presence and absence locations for the other methods.



11494  |     VIGNALI et al.

4  | E X AMPLE OF APPLIC ATION: BE ARDED 
VULTURE IN THE SWISS ALPS

To demonstrate possible applications of SDMtune, we used 1947 
observation locations of the Bearded vulture (Gypaetus barbatus) 
collected in Switzerland between 2004 and 2017. The occurrences 
were gathered from two databases: the International Bearded 
Vulture Monitoring (IBM) database and ornitho.ch, the official bird-
ing exchange platform in Switzerland. Clumped observations were 
removed with a spatial thinning of 250 m using the spThin package 
(Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson,  2015). 
We randomly split the observations into two partitions and used 
80% (1363 observations) as training dataset and the remaining 20% 
(584) as testing dataset. A set of 39 environmental predictors that 
might be relevant for the species was prepared for the analysis, as 
using numerous predictors together with a large amount of species 
observations allows for a better illustration of the advantages and 
time-saving functionalities provided by our package. The variables 
included information on topography, climate, geology, anthropo-
genic infrastructure, land cover, and food availability, referring to 
Hirzel et al. (2004). All predictors were prepared as raster maps with 
a resolution of 100 × 100 m, with each cell containing the average 
value of the respective variable within a 1 km2 circular moving win-
dow (a list of the variables is provided in Appendix A, Table A2). The 
whole analysis was conducted using R version 3.6.0 (R Core Team, 
2019).

We performed the data-driven variable selection using the func-
tion varSel on the initial set of 39 predictors. As a first step, we 
trained a model using the “Maxent” method with default settings 
(i.e., linear, quadratic, product and hinge as feature class combina-
tions, regularization multiplier equal to 1, 10,000 background loca-
tions and 500 iterations) and the 39 environmental variables. We 
then used the varSel function to execute the variable selection using 

the percent contribution to rank variable importance and the AUC as 
performance metric. The function arguments were set to check for 
Spearman's correlation coefficients |rs| greater than or equal to 0.7, 
based on 30,000 random background locations (Table A3).

Starting with the model trained using the 28 selected variables 
(i.e., the output of the varSel function, Table A4), we conducted a 
simple experiment to investigate the performance of the optimize-
Model compared to the gridSearch function in terms of execution 
time and best hyperparameter combination. We selected the AUC 
as the performance metric running a fourfold cross-validation. The 
folds were created by randomly splitting the training dataset with 
the function randomFolds. For the optimizeModel function, we 
used the default arguments: a population size of 20 models, five 
generations, kept 40% of the best performing models, randomly re-
tained 20% of the less performing ones and used a mutation chance 
of 40%. We tested different sets of hyperparameters (Table A5 and 
Figure A1), varying the feature class combinations, the regularization 
multiplier and the number of iterations. The results illustrate how 
using the optimizeModel function tremendously reduces computa-
tion time while providing a near-optimal solution when the number 
of hyperparameter combinations increases (Table 3). In our experi-
ment, with 1200 possible hyperparameter combinations, the execu-
tion time dropped from 21 hr 14 min and 45 s using gridSearch to 
1 hr 6 min and 58 s using optimizeModel with a similar predictive 
performance of the resulting models (mean validation AUC across 
the fourfold of 0.8588 and 0.8550, respectively).

In a next step, we investigated whether the final evaluation of 
the resulting models provided similar results. For this purpose, we 
selected the models with the optimized hyperparameters' combina-
tion (i.e., the output of the optimizeModel and gridSearch functions 
run with 1200 different hyperparameters' combinations). We used 
the reduceVar function to test if some variables with low contribu-
tion could be removed without affecting the validation AUC. We 

h Algorithm
Exec. 
time

Train 
AUC

Val 
AUC

Diff 
AUC FCa  reg iter

75 gridSearch 01:29:24 0.8687 0.8581 0.0106 lqph 3.0 500

optimizeModel 01:06:50 0.8687 0.8581 0.0106 lqph 3.0 500

150 gridSearch 02:29:16 0.8687 0.8581 0.0106 lqph 3.0 500

optimizeModel 01:16:25 0.8687 0.8581 0.0106 lqph 3.0 500

300 gridSearch 04:56:44 0.8691 0.8584 0.0107 lqph 2.9 500

optimizeModel 01:15:09 0.8691 0.8581 0.0110 lqph 2.8 500

600 gridSearch 10:57:43 0.8707 0.8588 0.0119 lqph 2.7 700

optimizeModel 01:18:46 0.8707 0.8588 0.0119 lqph 2.7 700

1200 gridSearch 21:14:45 0.8706 0.8588 0.0118 lqph 2.8 900

optimizeModel 01:06:58 0.8700 0.8550 0.0149 lqph 1.9 700

Note: The models were trained using the Maxent method.
The number of tested hyperparameters' combinations is given by “h”. A description of the exact 
hyperparameters' combinations is provided in Appendix A, Table A5. “FC” represents the feature 
class combination, “reg” the regularization multiplier and “iter” the number of iterations for the best 
performing model.
aFC: (l) linear, (q) quadratic, (p) product, and (h) and hinge. 

TA B L E  3   Performance of 
the gridSearch compared to the 
optimizeModel function for model tuning 
regarding execution time (expressed as 
HH:MM:SS) and evaluation metric (on 
the training dataset “Train AUC,” the 
validation dataset “Val AUC” and the 
difference between both “Diff AUC,” 
given as arithmetic mean of the fourfold 
cross-validation) on the case example data 
of the bearded vulture
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considered the Maxent percent contribution to rank the environ-
mental variables, a threshold of 2% for variable removal and used the 
Jackknife approach. We could remove nine and seven environmental 
variables, respectively, without reducing the mean validation AUC 
(Table A6 and Figure A2).

Finally, we trained a model using the full training dataset with-
out cross-validation, the selected environmental variables and the 
best hyperparameter configuration found by the two functions. We 
estimated the performance of these tuned models on the held apart 
testing dataset, obtaining very similar results (Table 4).

5  | DISCUSSION

Most of the algorithms supported by the package have predefined 
default values for the hyperparameters, while ANN requires the 
size of the hidden layer to be specified (Table 1). Default values are 
not necessarily the best choice for any given dataset and modeling 
problem, and a tuning procedure can improve model performance 
considerably. For example, the default hyperparameters' values 
of the Maxent algorithm were derived based on an empirical tun-
ing experiment conducted on 226 species (Phillips & Dudík, 2008), 
however, several authors found that these values were not always 
optimal for their specific datasets (Anderson & Gonzalez,  2011; 
Merow et  al.,  2013; Radosavljevic & Anderson,  2014; Warren & 
Seifert, 2011; Warren et al., 2014). While dedicated R packages are 

available for fine-tuning Maxent's hyperparameters, like ENMeval 
(Muscarella et al., 2014), wallace (Kass et al., 2018), and kuenm (Cobos 
et al., 2019), this process can be very time consuming (Table 2 and 3) 
and limiting, especially when performed for multiple species. With 
SDMtune, we introduce a genetic algorithm that drastically reduces 
the computation time of hyperperameter tuning while achieving an 
optimal or near-optimal model configuration.

While the gridSearch function can be preferred for tuning a single 
or a few hyperparameters, it quickly comes to its limits when testing 
numerous hyperparameters' combinations. In this case, the random-
Search function may represent a valid and time-efficient alternative 
for finding a better model compared to the one trained with default 
settings. By taking a random subsample from predefined hyperpa-
rameters' combinations, it has to train only n models (with n equal 
to the population size, i.e., 20 by default). During this process, it may 
select the best combination simply by chance. This chance, however, 
decreases with an increasing amount of possible combinations. The 
function optimizeModel, in contrast, can achieve a better result in a 
reasonable amount of time, as it makes use of the information gener-
ated during the tuning process, thanks to the genetic algorithm. This 
function also trains a reduced amount of models compared to grid-
Search with the amount depending on: (1) the population size; (2) the 
fractions of both best and worst performing models to be retained at 
each generation; (3) the number of generations, which results in 60 
models when using the default settings.

Although there is no rule of thumb to decide when optimize-
Model should be preferred to gridSearch or randomSearch, the 
choice can be supported by considering four important factors. 
The first and most important factor is the time necessary to train 
one model, which in turn depends on the sample size, the number 
of predictors, the selected method, and the setting of the hyper-
parameters. For instance, increasing the number of trees in RF or 
BRT increases the computation time as does decreasing the amount 
of regularization or using hinge or threshold future class combina-
tions in ME methods. The second is the selected evaluation strat-
egy: when k-fold cross-validation is performed, the required time to 
train one model is inflated by the factor k. Moreover, using k-fold 
cross-validation requires to compute the evaluation metric k times 
and compute their mean value, and this marginally increases the 
overall computation time. The third factor is the selected evalua-
tion metric. To compute, the AICc is necessary to get the prediction 
for the whole study area which might take a long time in the case 
of large extents. The fourth factor is the number of hyperparame-
ters' combinations used for the tuning procedure. Considering these 
aspects, the total amount of time necessary to tune the hyperpa-
rameters with the function gridSearch can be roughly estimated 
based on the time necessary to train and evaluate one model mul-
tiplied by the number of possible hyperparameters' combinations. 
Furthermore, the two functions could also be used in conjunction: 
the optimizeModel function returns n models, with n equal to the 
size of the predefined “population” of models (20 by default), or-
dered by decreasing model performance. The user could inspect the 
values of the hyperparameters of the returned models and further 

TA B L E  4   Comparison of model performance between models 
tuned using the genetic algorithm and grid search implemented in 
the optimizeModel and gridSearch function respectively, on the 
case example data of the Bearded vulture

Step Dataset Model performance

Starting model Training 0.863

Validation 0.846

Testing 0.836

Genetic 
algorithm

Grid 
search

Hyperparameter 
tuning

Training 0.870 0.871

Validation 0.856 0.859

Testing 0.848 0.853

Optimize parsimony Training 0.865 0.868

Validation 0.856 0.859

Testing 0.846 0.854

Final model evaluation Training 0.862 0.867

Testing 0.846 0.855

Note: Performance is evaluated with the AUC metric on the training, 
validation and testing datasets as mean AUC of the fourfold cross-
validation at different steps of the modeling workflow. For the final 
model evaluation the model is trained merging training and validation 
datasets. The testing dataset refers to the dataset held apart and not 
used during the hyperparameter tuning and optimize parsimony steps 
and the starting model is the model trained after removing highly 
correlated variables.
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refine them using gridSearch. Finally, in case different hyperparame-
ter-configurations result in models with equal or similar values of the 
evaluation metric, the selection of one among the competing models 
can be based on further exploration, for example, by computing mul-
tiple evaluation metrics. It should be stressed that hyperparameter 
tuning is limited to the values of the hyperparameters defined by 
the user and thus is not exhaustive. What we defined “best model” 
refers to the best model among those trained with all the possible 
combinations of the predefined values. Therefore, the definition of 
these values determines the quality of the final model.

The genetic algorithm implemented in the function optimize-
Model relies on some parameters that govern the optimization pro-
cess (i.e., population size, number of generations, fractions of both 
best and worst performing models to be retained at each genera-
tion, and probability of mutation during crossover episodes), which 
are provided with default values. We defined these values based 
on a deep understanding of the algorithm and after testing it multi-
ple times on varying datasets. Nevertheless, although these values 
could have been hard coded into the source code, we decided to pro-
vide a more flexible function making them available as arguments. 
In the performance assessment of the genetic algorithm and in the 
example of application presented here (Table 2 and 3), default values 
worked when testing as much as 1200 predefined hyperparameters' 
combinations. In case of a similar or higher amount of hyperparame-
ters' combinations, these values might require small adjustments to 
introduce more variability, for instance by increasing the population 
size and the probability of mutation.

With the implementation of the genetic algorithm, we intro-
duced a new way of hyperparameters optimization in the field of 
SDMs. This way could be extended further by testing different mod-
ifications. For example, in our implementation only one model is cre-
ated during the “crossover” event, but two “sibling” models could 
be produced instead. Furthermore, other optimization algorithms, 
like the Bayesian optimization, could be implemented. With our op-
timizeModel function, we provide a first implementation of a new 
algorithm that can be extended in future releases of the package.

Not only the tuning of hyperparameters, but also the selection 
of environmental variables for SDMs has gained attention in re-
cent years (Jueterbock, Smolina, Coyer, & Hoarau, 2016; Warren 
et  al.,  2014; Zeng et  al.,  2016). Despite the fact that highly cor-
related environmental variables are not a problem when the aim 
of the study is prediction in the same extent of the observed 
data, reducing collinearity is recommended in order to reduce 
model complexity and increase the interpretability of the predic-
tors (Dormann et  al.,  2013; Merow et  al.,  2013). In addition, al-
though the degree of accepted model complexity varies according 
to the modeling scope(s) (Halvorsen,  2012; Halvorsen, Mazzoni, 
Bryn, & Bakkestuen, 2015), it has been pointed out that models 
might perform best when trained with a reduced number of pre-
dictors (Brun et  al.,  2020; Halvorsen et  al.,  2015). Even though 
the selection should be driven by the knowledge of the modeled 
species, this might be difficult when the user must decide among 
several a priori ecologically relevant predictors for the species, or 

if the ecology of the species is poorly known. Cobos et al. (2019), 
with their package kuenm, provide a framework that enables tun-
ing several models starting with different sets of environmental 
variables. Yet, this process still requires predefining the predictor 
sets. Warren et al. (2014) described a method where environmen-
tal variables are removed in a stepwise approach that accounts 
for regularization tuning, variable importance, and improvements 
in the AICc metric. A similar approach has been implemented in 
the package MaxentVariableSelection (Jueterbock, 2015), used by 
Jueterbock et al. (2016) to model the effect of climate change on 
the Arctic seaweed (Fucus distichus). In both examples, all predic-
tors with a contribution-score lower than a given threshold and 
predictors highly correlated with the most important variable 
were removed simultaneously at each step. Given that removing a 
variable affects the contribution-score of the remaining predictors 
and therefore their resulting rank, our functions for data-driven 
variable selection remove only one variable at a time. For the same 
reason, removing highly correlated variables and variables with 
low contribution is performed by two distinct functions and not 
combined into the same process, as described in the previous ex-
amples. Furthermore, instead of relying merely on a variable's rank 
of importance for deciding which one to retain, our functions base 
the selection on a leave-one-out Jackknife test, while controlling 
the desired performance metric. Note that the varSel function 
aims at maintaining the value of the selected metric for the train-
ing dataset (i.e., removes the variables that decreases least the 
evaluation metric) while the reduceVar function aims to at least 
maintain the value of the selected metric for the validation dataset 
(i.e., removes a variable if the evaluation metric does not drop). The 
reasons are, first, that highly correlated predictors should be re-
moved before performing any tuning, and second, that optimizing 
the selected metric for the training dataset allows capturing the 
information contained in the data, which is especially important if 
ecological selection criteria are lacking. The over- or underfitting 
can then be controlled later by fine-tuning the hyperparameters. 
On the other hand, removing variables with low predictive contri-
bution aims to reduce model complexity and increase model gen-
eralization, which is why the validation dataset is used.

There are other R packages which include functions for variable 
selection. Caret, for instance, implements several methods based, 
among others, on simulated annealing, recursive elimination, or a 
genetic algorithm. Whereas these methods aim at identifying the 
best subset of the available variables, our implementations ad-
dress different problems: varSel removes variables to reduce col-
linearity, and reduceVar removes variables that contribute least 
to the model to increase parsimony. The functions for data-driven 
variable selection can be particularly useful when the fitted model 
is extrapolated in space or time. In such cases, the currently pre-
vailing correlations among the environmental variables may dif-
fer from those observed in the new time periods or geographical 
areas (Braunisch et  al.,  2013), causing unexpected predictions 
(Warren et al., 2014). This risk is reduced with a reduced number 
of predictors. Moreover, reducing the number of predictors may 
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limit overfitting, and thus result in a model that generalizes better 
and thus yields more accurate predictions for data not used during 
training. The selection of a threshold to reduce the number of vari-
ables with the function reduceVar is quite arbitrary. If the aim is 
to remove as many variables as possible while preserving model 
performance, the threshold could be set to 100 and the Jackknife 
method must be selected. On the contrary, if the user, based on 
his expertise, judges a certain variable as ecologically important 
for the species and wants to retain it in the model, he could de-
fine a threshold that is lower than the importance of this variable. 
Nevertheless, the functions presented in this article should not be 
applied blindly. Therefore, SDMtune provides interactive real-time 
charts to visualize every step of the algorithms with the idea that 
the user further evaluates the validity of the final output.

These charts are particularly useful for two reasons. First, be-
cause they are updated in real time, they confirm that the running 
function is working properly and is not frozen at some unknown 
step. This is especially important for functions that take long to be 
executed. Second, because they are interactive, different types of 
information can be provided without overloading a single graph, 
since extra information is embedded in a tooltip that appears when 
the user hovers over a specific element of the chart. Interactive re-
al-time charts are well known and used in other fields that represent 
the state-of-the-art of machine learning, and available in few R pack-
ages such as keras (Allaire & Chollet, 2020) which allows the user to 
build complex deep learning models.

6  | CONCLUSION

The new R package SDMtune enables data-driven variable selec-
tion and hyperparameters tuning within a unified and user-friendly 
framework. The core functions provide interactive real-time charts 
that represent the effect of each step of the implemented algorithms 
in relation to the model performance and allow a deeper under-
standing of the automated processes. The new functions we present 
in this paper (i.e., genetic algorithm for hyperparameter tuning and 
automated variable selection) are implemented in a framework that 
also integrates functions already available in other packages. This 
unification, combining all required functions in a single package, of-
fers the advantage for the user to learn a unique framework instead 
of jumping from one package to the other, each time having to adapt 
data structures. Currently, SDMtune supports three evaluation met-
rics (i.e., AUC, TSS, and AICc) and four modeling methods (i.e., ANN, 
BRT, RF, and ME) and more can be easily added in future releases.

Despite providing comprehensive descriptions and visual illus-
tration of the functions, we still stress that users should be familiar 
with their data and the selected algorithm used to train their model. 
Particular attention should be paid to preparing the data before 
modeling. SDMtune also offers functions to prepare the data, but 
it is upon the user's knowledge and expertise to decide upon the 
most appropriate way to partition and filter the dataset, account-
ing for sample size and possible sampling biases, or which metric is 

best to evaluate the model in relation to the modeling objectives. 
In this respect Araújo et al.  (2019) defined best-practice standards 
for SDMs stressing the importance of evaluating models with a 
temporally or spatially independent dataset (Araújo et  al.,  2019: 
Supplement S2.4B). For this reason, SDMtune supports functions 
well developed in other packages (blockCV and ENMeval) to produce 
such data partitions. These best-practices have recently gained im-
portance and have been integrated in the ODMAP standard protocol 
(Zurell et al., 2020) that provides a workflow for reproducible and 
good quality analyses.

The package documentation provides a more complete descrip-
tion of all the available functions, and the articles hosted on the 
package webpage (https://consb​iol-unibe​rn.github.io/SDMtu​ne/) 
describe meaningful examples of application in various fields of eco-
logical research. These examples are also included in the package 
and accessible through the vignettes.

7  | INSTALL ATION

The package SDMtune is available in the CRAN repository at https://
CRAN.R-proje​ct.org/packa​ge=SDMtune and can be installed in R 
with the command install.packages(“SDMtune”). The package is 
under development and the source code is hosted in GitHub (https://
github.com/ConsB​iol-unibe​rn/SDMtune). We encourage future 
users to provide feedback and report bugs by opening an issue on 
the GitHub platform.
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APPENDIX A

R CODE TO REPRODUCE THE PERFORMANCE A SSE SSMENT OF THE G ENE TIC ALGORITHM
The output presented in the article has been produced using R version 3.6 in a Linux operating system. Results might be slightly different with 
other versions of R or operating systems due to possible different random numbers generated after setting the seed.

library(SDMtune)
# Set general seed for all experiments
seed = 186546
## Load and prepare data--------------------------------------------------------
files <− list.files(path = file.path(system.file(package = "dismo"), "ex"), pattern = "grd", full.names = TRUE)
predictors <− raster::stack(files)
p_coords <− virtualSp$presence
a_coords <− virtualSp$absence
data <− prepareSWD(species = "Virtual species", p = p_coords, a = a_coords, env = predictors[[1:8]])
folds <− randomFolds(data, k = 10, seed = seed)
## ANN experiment 1200 hyperparameters------------------------------------------
# Train starting model ==> size inner layer = number of variables
set.seed(seed)
model_ann <− train("ANN", data = data, size = 8, folds = folds)
auc(model_ann)
auc(model_ann, test = TRUE)
# 1200 hyperparameters' combinations
h_ann <− list(size = 2:81, decay = c(0.01, 0.05, 0.1, 0.3, 0.5),
maxit = c(100, 500, 1000))
nrow(expand.grid(h_ann)) == 1200 # Make sure there are 1200 combinations
# Genetic Algorithm
om_ann <− optimizeModel(model_ann, hypers = h_ann, metric = "auc", seed = seed)
om_ann@results[1:5,]
# Grid Search
set.seed(seed)
gs_ann <− gridSearch(model_ann, hypers = h_ann, metric = "auc", save_models = FALSE)
head(gs_ann@results[order(-gs_ann@results$test_AUC),])
## BRT experiment 1200 hyperparameters------------------------------------------
# Train starting model
set.seed(seed)
model_brt <− train("BRT", data = data, folds = folds)
auc(model_brt)
auc(model_brt, test = TRUE)
# 1200 hyperparameters' combinations
h_brt <− list(n.trees = seq(40, 1020, 20), interaction.depth = 1:4, shrinkage = seq(0.05, 0.1, 0.01))
nrow(expand.grid(h_brt)) == 1200 # Make sure there are 1200 combinations
# Genetic Algorithm
om_brt <− optimizeModel(model_brt, hypers = h_brt, metric = "auc", seed = seed)
om_brt@results[1:5,]
# Grid Search
gs_brt <− gridSearch(model_brt, hypers = h_brt, metric = "auc", save_models = FALSE)
head(gs_brt@results[order(-gs_brt@results$test_AUC),])
## RF experiment 1200 hyperparameters------------------------------------------
# Train starting model
set.seed(seed)
model_rf <− train("RF", data = data, folds = folds)
auc(model_rf)
auc(model_rf, test = TRUE)



     |  11501VIGNALI et al.

# 1200 hyperparameters' combinations
h_rf <− list(ntree = seq(420, 1000, 20), mtry = 3:6, nodesize = 1:10)
nrow(expand.grid(h_rf)) == 1200 # Make sure there are 1200 combinations
# Genetic Algorithm
om_rf <− optimizeModel(model_rf, hypers = h_rf, metric = "auc", seed = seed)
om_rf@results[1:5,]
# Grid Search
gs_rf <− gridSearch(model_rf, hypers = h_rf, metric = "auc", save_models = FALSE)
head(gs_rf@results[order(-gs_rf@results$test_AUC),])
## Maxnet experiment 1200 hyperparameters---------------------------------------
# Train starting model
bg_coords <− virtualSp$background
data <− prepareSWD(species = "Virtual species", p = p_coords, a = bg_coords, env = predictors[[1:8]])
folds <− randomFolds(data, k = 10, only_presence = TRUE, seed = seed)
model_mx <− train("Maxnet", data = data, folds = folds)
auc(model_mx)
auc(model_mx, test = TRUE)
# 1200 hyperparameters' combinations
h_mx <− list(reg = seq(0.1, 4.88, 0.02), fc = c("l", "lh", "lqp", "lqph", "lqpht"))
nrow(expand.grid(h_mx)) == 1200 # Make sure there are 1200 combinations
# Genetic Algorithm
om_mx <− optimizeModel(model_mx, hypers = h_mx, metric = "auc", seed = seed)
om_mx@results[1:5,]
# Grid Search
gs_mx <− gridSearch(model_mx, hypers = h_mx, metric = "auc", save_models = FALSE)
head(gs_mx@results[order(-gs_mx@results$test_AUC),])

TA B L E  A 1   Hyperparameter values used during the performance assessment of the genetic algorithm

Method Hyperparameters' values

ANN size = 2:81, decay = c(0.01, 0.05, 0.1, 0.3, 0.5), maxit = c(100, 500, 1000)

BRT n.trees = seq(40, 1020, 20), interaction.depth = 1:4, shrinkage = seq(0.05, 0.1, 0.01)

RF ntree = seq(420, 1000, 20), mtry = 3:6, nodesize = 1:10

ME (Maxnet) reg = seq(0.1, 4.88, 0.02), fc = c("l", "lh", "lqp", "lqph", "lqpht")

Note: The values are provided using the R code to generate them.
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TA B L E  A 2   Complete list of the environmental variables used in the case example of the Bearded vulture with metric and data source 
(warm season: May to October; cold season: November to April)

Variable Abbreviation Source

Average altitude (m a.s.l.) altitude_av DHMa 

Distance from anthropogenic areas (m) an_area_d_av Vector 25b 

Bush frequency (%) bush_fr* Vector 25

Limestone frequency (%) compact_limestone_fr* GeoKarten500c 

Distance from cableways without ski-lifts (m) c_way_d_av* Vector 25

Sine of the aspect (−1 to 1) eastness* DHM

Forest frequency (%) forest_fr* Vector 25

Glacier frequency (%) glacier_fr* Vector 25

Gneiss frequency (%) gneiss_fr* GeoKarten500

Granite frequency (%) granite_fr* GeoKarten500

Ibex density in the warm season (N/ha) ibex_summer_density_av* BAFUd  + CSCFe 

Ibex density in the cold season (N/ha) ibex_winter_density_av* BAFU + CSCF

Distance from lakes (m) lake_d_av* Vector 25

Marshland frequency (%) marsh_fr* Vector 25

Cosine of the aspect (−1 to 1) northness_av* DHM

Open forest frequency (%) open_forest_fr Vector 25

Other rock frequency (%) other_rocks_fr* GeoKarten500

Grassland and unproductive vegetation frequency (%) other_soil_fr* Vector_25 + BfSf 

Permanent culture frequency (%) permanent_fr* Vector 25

Average precipitation in the cold season (mm) prec_122_av* WSLg 

Average precipitation in the warm season (mm) prec_57_av* WSL

Distance from rivers and creeks (m) riv_cre_d_av* Vector 25

Distance from roads and railways (m) ro_rail_d_av* Vector 25

Rock frequency (%) rock_fr Vector 25

Distance from rock steeper than 45° (m) rock45_d_sv Vector 25 + DHM

Standard deviation (SD) of the altitude (m) roughness* DHM

Chamois occurrence probability (0–1) rupicapra_hs_av* CSCF

Scree frequency (%) scree_fr* Vector 25

Sheep and goat warm season density (N/ha) sheep_goat_d_av* BsF

Distance from ski-lifts (m) ski_d_av* Vector 25

Slope (degree) slope_av DHM

Frequency of slopes steeper than 30° (%) slope30_fr DHM

Average solar radiation in the cold season (WH/m2) solar_rad122_av DHM

Average solar radiation in the warm season (WH/m2) solar_rad57_av* DHM

Average temperature in the cold season (°C) tave_122_av WSLg 

Average temperature in the warm season (°C) tave_57_av WSL

Topographic Position Indexh  (index) tpi_av* DHM

Distance from water (m) water_d_av Vector 25

Average wind speed at 100 m above ground (m/s) wind_100_av* BFEi 

Note: Variables were calculated as average value within a circular moving window with r = 564 m (1 km2) on raster data of 100 × 100 m resolution. 
The 28 variables selected by the varSel function are marked using the * symbol.
aDigital Height Model of Switzerland (Swisstopo):https://shop.swiss​topo.admin.ch/en/produ​cts/height_model​s/dhm25. 
bDigital Cartographic Model of Switzerland (Swisstopo):https://shop.swiss​topo.admin.ch/en/produ​cts/maps/natio​nal/vecto​r/smv25. 
cGeo Maps:https://shop.swiss​topo.admin.ch/de/produ​cts/maps/geolo​gy/GK500. 
dDistribution of ibex colonies:https://www.bafu.admin.ch/bafu/de/home/theme​n/biodi​versi​taet/zusta​nd/karten.html. 
eCentre suisse de cartographie de la faune (CSCF):http://www.cscf.ch/cscf/de/home.html. 
fFederal Administration for Statistic Switzerland (BsF):https://www.bfs.admin.ch/bfs/de/home/stati​stiken.html. 
gFederal Institute for Forest, Snow and Landscape Research WSL; available upon request: www.wsl.ch. 
hTopographic position index according to Wilson (1984). 
iSwiss Wind Atlas (Bundesamt für Energie BFE, 2016). 

https://shop.swisstopo.admin.ch/en/products/height_models/dhm25
https://shop.swisstopo.admin.ch/en/products/maps/national/vector/smv25
https://shop.swisstopo.admin.ch/de/products/maps/geology/GK500
https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/zustand/karten.html
http://www.cscf.ch/cscf/de/home.html
https://www.bfs.admin.ch/bfs/de/home/statistiken.html
http://www.wsl.ch
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TA B L E  A 3   Spearman' correlation coefficient of highly 
correlated environmental variables (rs ≤ −0.7 and rs ≥ 0.7). For 
variable codes see Table A2

Var1 Var2 rs

tave_122_av tave57_av 0.996

altitude_av tave57_av −0.996

altitude_av tave_122_av −0.995

forest_fr open_forest_fr 0.993

slope_av slope30_fr 0.970

riv_cre_d_av water_d_av 0.925

rock_fr rock45_d_av −0.903

roughness slope_av 0.882

roughness slope30_fr 0.863

altitude_av ro_rail_d_av 0.826

ro_rail_d_av tave57_av −0.826

northness_av solar_rad122_av −0.814

rock45_d_av slope_av −0.814

ro_rail_d_av tave_122_av −0.814

rock45_d_av slope30_fr −0.813

an_area_d_av ro_rail_d_av 0.803

solar_rad122_av solar_rad57_av 0.797

an_area_d_av tave57_av −0.774

an_area_d_av tave_122_av −0.764

altitude_av an_area_d_av 0.762

altitude_av scree_fr 0.738

scree_fr tave57_av −0.734

scree_fr tave_122_av −0.732

open_forest_fr tave122_av 0.731

open_forest_fr tave57_av 0.731

altitude_av open_forest_fr −0.718

forest_fr tave_122_av 0.718

forest_fr tave57_av 0.718

rock45_d_av roughness −0.717

rock_fr scree_fr 0.707

altitude_av forest_fr −0.705

TA B L E  A 4   List of the environmental variables selected by the 
varSel function and relative percent contribution rounded to the 
first decimal place before executing the optimizeModel function

Variable P. contribution

bush_fr 0.7

compact_limestone_fr 3.5

c_way_d_av 1.1

eastness_av 0.6

forest_fr 0.8

glacier_fr 0.6

gneiss_fr 1.4

granite_fr 1.3

ibex_summer_density_av 9.8

ibex_winter_density_av 41.3

lake_d_av 0.1

marsh_fr 0.0

northness_av 3.9

other_rocks_fr 0.5

other_soil_fr 1.4

permanent_fr 0.8

prec_122_av 11.2

prec_57_av 1.9

riv_cre_d_av 0.4

ro_rail_d_av 0.1

roughness 0.5

rupicapra_hs_av 2.4

scree_fr 4.2

sheep_goat_d_av 1.4

ski_d_av 1.4

solar_rad57_av 0.9

tpi_av 6.7

wind_100_av 1.0
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TA B L E  A 6   List of the remaining environmental variables after 
the execution of the reduceVar function (Figure A2) and relative 
percent contribution rounded to the first decimal place

Variable

Percent contribution

optimizeModel gridSearch

bush_fr – 0.9

compact_limestone_fr 7.7 6.8

c_way_d_av 1.7 1.9

eastness_av 1.4 1.4

forest_fr 1.3 1.4

gneiss_fr 1.5 1.7

granite_fr 1.5 1.3

ibex_summer_density_av 19.0 18.5

ibex_winter_density_av 6.8 7.0

northness_av 6.8 6.8

other_rocks_fr 2.2 3.2

other_soi_fr – 0.8

permanent_fr 0.7 0.7

prec_122_av 24.6 24.2

prec_57_av 2.5 2.4

roughness 1.5 1.0

rupicapra_hs_av 3.5 3.5

scree_fr 9.0 9.9

ski_d_av 1.3 1.3

solar_rad57_av 5.2 3.4

wind_100_av 1.7 1.9

Note: The model parsimony optimization was performed based on the 
output of the optimizeModel and gridSearch functions respectively, 
executed to tune 1200 possible combinations of hyperparameters.

TA B L E  A 5   Hyperparameter values used during the hyperparameter tuning experiment with h: number of tested hyperparameter 
combinations, FC: feature class combinations with linear (l), quadratic (q), product (p) and hinge (h) feature classes, reg: regularization 
multiplier and iter: number of iterations

h FC reg iter

75 c(“lq”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.2, 3, 0.2) 500

150 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.2, 5, 0.2) 500

300 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) 500

600 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) c (500, 700)

1200 c(“lq”, “lp”, “lh”, “lqp”, “lqh”, “lqph”) seq(0.1, 5, 0.1) seq (300, 900, 200)

Note: The values are provided using the R code to generate them. In the optimizeModel function, in order to have consistent results, we set the seed 
argument to 186,546 (a randomly generated number).
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F I G U R E  A 1   Snapshot of the real-time 
chart after executing the optimizeModel 
function (with a “population size” of 
20 models and five model generations) 
using 1200 different hyperparameter 
combinations on the case example data 
of the Bearded vulture. The scatterplot 
on top shows the training AUC (in orange) 
and the validation AUC (in blue) of the 
20 ranked models at the end of the fifth 
generation, given as the arithmetic mean 
of the fourfold cross-validation. The line 
plot at the bottom shows the increase in 
model performance (based on the AUC 
on both training and validation dataset) at 
each generation with start: the starting 
model before running the optimization 
process, 0: the best performing model 
after the random population is created, 
1–5: the best performing models in each 
of the five generations of the optimization 
process
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F I G U R E  A 2   Snapshot of the real-
time chart after executing the reduceVar 
function on the case example data of the 
Bearded vulture. The bar chart on top 
shows the 28 uncorrelated environmental 
variables with the percent contribution 
of the retained environmental variables 
at the end of the selection process, 
calculated according to Phillips 
et al. (2006). The line chart at the bottom 
shows the change in model performance 
(based on the AUC on both the training 
and validation dataset, given as arithmetic 
mean of the fourfold cross-validation) 
at each iteration where a single variable 
is removed. In the RStudio viewer pane, 
the chart is interactive and when the 
user hovers over the line or bar chart 
a tooltip reports the variable that has 
been removed and the relative model 
performance values. Variable codes are 
provided in Table A2


