
RESEARCH ARTICLE

Separating the effects of habitat amount and fragmentation
on invertebrate abundance using a multi-scale framework

Laura Bosco . Ho Yi Wan . Samuel A. Cushman . Raphaël Arlettaz .
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Abstract

Context Herbicide treatments in viticulture can

generate highly contrasting mosaics of vegetated and

bare vineyards, of which vegetated fields often provide

better conditions for biodiversity. In southern Switzer-

land, where herbicides are applied at large scales,

vegetated vineyards are limited in extent and isolated

from one another, potentially limiting the distribution

and dispersal ability of organisms.

Objectives We tested the separate and interactive

effects of habitat amount and fragmentation on

invertebrate abundance using a multi-scale frame-

work, along with additional environmental factors.

We identified which variables at which scales were

most important in predicting patterns of invertebrate

abundance.

Methods We used a factorial design to sample across

a gradient of habitat amount (area of vegetated

vineyards, measured as percentage of landscape

PLAND) and fragmentation (number of vegetated

patches, measured as patch density PD). Using 10

different spatial scales, we identified the factors and

scales that most strongly predicted invertebrate abun-

dance and tested potential interactions between habitat

amount and fragmentation.

Results Habitat amount (PLAND index) was most

important in predicting invertebrate numbers at a field

scale (50 m radius). In contrast, we found a negative

effect of fragmentation (PD) at a broad scale of 450 m

radius, but no interactive effect between the two.

Conclusions The spatial scales at which habitat

amount and fragmentation affect invertebrates differ,

underpinning the importance of spatially explicit

study designs in disentangling the effects between

habitat amount and configuration. We showed that the

amount of vegetated vineyards has more influence on

invertebrate abundance, but that fragmentation also

contributed substantially. This suggests that efforts for

augmenting the area of vegetated vineyards is more

beneficial for invertebrate numbers than attempts to

connect them.
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Introduction

The conversion of natural landscapes into intensively

modified systems, such as urban areas, industrial

estates and high-intensity farmland, has destroyed,

degraded, and fragmented habitats and led to tremen-

dous biodiversity losses (Krebs et al. 1999; Foley et al.

2011; Mendenhall et al. 2014). Farmland landscapes

in Europe often provide extreme cases of habitat loss

and fragmentation, with extensive areas of intensively

cultivated land interspersed with few natural habitat

remnants. Because habitat fragmentation in cultivated

landscapes is almost always associated with habitat

loss, it is difficult to disentangle these two conceptu-

ally distinct processes (Debinski and Holt 2000;

McGarigal and Cushman 2002; Fahrig 2003). This

hampers understanding the mechanisms that drive

biodiversity loss in intensively managed agricultural

landscapes (Lawton 1995) and hinders the provision of

evidence-based guidance for biodiversity conserva-

tion and agro-environmental management (e.g., Pedro

and Simonetti 2015; Haddad et al. 2017).

Fahrig (2013) proposed the ‘‘habitat amount

hypothesis’’ which asserts that the area of available

habitat is a more important driver of species diversity

than its spatial configuration and that, given the

dominant effects of habitat amount relative to frag-

mentation, research should focus on habitat amount

analyses and does not need to evaluate the effects of

patch size and isolation. Several study outcomes have

supported this hypothesis. For example, Seibold et al.

(2017) found that saprophytic beetle species richness

was mainly explained by habitat amount while the

spatial arrangement seemed unimportant. Also, for

predicting species richness of small mammals, habitat

amount was the most important single predictor (Melo

et al. 2017). Conversely, Haddad et al. (2017) have

shown experimentally that, in addition to habitat

amount, fragmentation was a key determinant of plant

and invertebrate species richness. Furthermore, sim-

ulation studies have shown that species extinction

probability increases with habitat fragmentation, but

only when habitat amount is low (Rybicki and Hanski

2013; Hanski 2015). These contrasting results suggest

the need for more studies on a broader range of study

ecosystems and taxa and including additional response

variables, such as species abundances, so as to provide

sound guidance for biodiversity management. Specif-

ically, studies on invertebrates, especially within

agroecosystems, have been scarce, but provide an

excellent focus to separate the effects of habitat

amount and fragmentation. The high-contrast nature

of agricultural systems and the rapid responses and

fine scaled population dynamics of invertebrates

collectively make them more tractable for studying

both field and landscape level patterns of population

responses to area and fragmentation (McGarigal and

Cushman 2002).

The observed relationship between a biological

response and environmental variables or processes,

such as habitat loss and fragmentation, are highly

dependent on the scale of analysis (Wiens 1989; Wu

and David 2002; McGarigal et al. 2016; Miguet et al.

2016). Hence, the scale of analysis must be matched to

the objectives and organisms under question if accu-

rate results are to be obtained (Levin 1992; Wu and

David 2002). Currently, the most common approach

(McGarigal et al. 2016) to identify the characteristic

scale in habitat relationship modeling is a two-step

procedure in which the optimal scale for each

covariate is determined univariately, after which the

scale optimized covariates are combined into a single

multi-scale, multi-predictor model (e.g., Zeller et al.

2014; Laforge et al. 2015; Wan et al. 2017). There has

been an increasing number of multi-scale habitat

modeling studies, but few of them separated the

effects of habitat amount and configuration (e.g.,

Schüepp et al. 2014; Pedro and Simonetti 2015;

Seibold et al. 2017).

In this study, we aimed to disentangle the effects of

habitat amount (i.e. total area of vegetated vineyards)

and fragmentation (i.e. number of separate, vegetated

vineyard patches) on invertebrate abundance in a

vineyard system in Switzerland. We used a factorial

design to select patches for sampling invertebrates,

assuring that we captured a large proportion of the

gradient of habitat amount and fragmentation in our

study system. To gain a holistic understanding about

the drivers of invertebrate abundance patterns in this

vineyard ecosystem and to avoid possible confounding

effects, we also included a suite of potentially

important environmental variables in addition to

habitat area and fragmentation in the analysis. With
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a multi-predictor, multi-scale modeling approach we

sought to answer the following questions: (i) does the

fragmentation and habitat amount of vegetated vine-

yards affect invertebrate abundance and if so, are their

effects dependent on each other? (ii) what is the

relative importance of area versus fragmentation of

vegetated vineyards on invertebrate abundance? (iii)

which topographic, climatic and land use variables at

which scale have the strongest effect on invertebrates?

(iv) does the multi-scale, multi-predictor model

provide stronger inference than a single-scale, multi-

predictor model? Responses to these questions bear an

important relevance in the context of biodiversity

conservation in farmland.

Methods

Study area

The study was carried out in eight different landscapes

in the canton of Valais, southern Switzerland (Fig. 1).

The study landscapes (between Fully 46�080 N 7�070 E
and Varen 46�19.200 N 7�36.470 E; 480–780 m a.s.l.)

constitute the largest continuous vineyard areas in this

region. Vineyards represent the predominant agricul-

tural land use type on the foothills, covering a surface

of roughly 50 km2 in Valais. They are mainly located

on south facing slopes and are interspersed with small

remnants of dry and deciduous forest and rocky steppe

(Arlettaz et al. 2012). About 80% of the vineyards are

intensively managed and support virtually no ground

vegetation cover due to regular herbicide application,

whereas the remaining 20% are cultivated by a

minority of farmers who have adopted more environ-

mentally friendly management practices, which pro-

mote the growth of ground vegetation (Arlettaz et al.

2012). At the landscape level, these two management

regimes represent a near binary system (bare ground

vs. vegetated vineyards, Fig. 1), with few natural and

semi natural elements present (e.g., trees, stone walls,

hedges). This quasi-binary system of bare versus

vegetated vineyards therefore presents a system well

suited to evaluate the effects of habitat area and

configuration.

Factorial sampling design to separate habitat

amount and fragmentation

We used a factorial, stratified sampling design to

separate the effects of habitat amount and fragmenta-

tion and to ensure that invertebrate sampling was well

distributed across these two gradients, as suggested by

McGarigal and Cushman (2002). A raster depicting all

Valais vineyard fields (‘‘field type’’) classified into

vegetated and bare was used for this purpose. To

distinguish between vegetated and bare fields, we used

the normalized difference vegetation index (NDVI)

produced from high resolution satellite imagery

(WorldView-2, Space Imaging GmbH EUSI,

2 9 2 m resolution, source: Swiss Federal Office of

Topography). The recording is best done before the

sprouting of the vine leaves (Mid-April in 2012 in

Valais). Hence, satellite pictures for Valais were

recorded on April 1 2013, ensuring that the calculated

NDVI was not influenced by leaves of the vine plants.

While intra-annual variation in ground vegetation

cover, and subsequent NDVI, was expected to be high

due to vegetation cycles in temperate zones, inter-

annual variation was low given that the management

modes remain stable over years. This is partly due to

agricultural legislations related to long-term con-

tracted subsidies in Switzerland. We set a threshold

of NDVI = 0.28 to differentiate between bare and

vegetated vineyard conditions, which was based on

correlations with field estimates of ground coverage

also collected in spring 2013. Fields with NDVI[
0.28 represented permanent ground cover, while

those with NDVI\ 0.28 showed remains of sponta-

neous winter greening and would be treated with

herbicide later in the growing season. Hence, this

threshold reflects the two management modes of bare

(herbicide treated) and vegetated vineyards.

Habitat amount and fragmentation in our stratified

sampling design were quantified with FRAGSTATS

(McGarigal et al. 2012) using a moving window of

150 m radius. With this approach, we calculated class

level patch density as a measure of fragmentation (PD;

the number of patches per 100 ha) and class level

proportion of landscape (PLAND) as a measure of

habitat amount. Patch density was chosen as our

indicator of fragmentation following a series of

research that assessed the redundancy and behavior

of landscape metrics (e.g., Neel et al. 2004; Cushman

et al. 2008) and explicitly evaluated the relationships
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between landscape metrics and species responses to

habitat heterogeneity and connectivity (e.g., Grand

et al. 2004; Chambers et al. 2016). Furthermore, it

fulfils the criteria that fragmentation measures should

be interpretable intuitively, should not require much

data input and be as simple as possible from a

mathematical point of view (Jaeger 2000). Lower and

upper 40% of PD and PLAND values were used to

represent low and high levels of habitat area and

fragmentation respectively, creating four classes

(Table 1). In addition to these four classes, we

included the matrix around the vegetated patches as

sampling fields (i.e. bare fields with\ 40% ground

vegetation cover), to be able to detect field-scale

effects mainly driven by the difference between

vegetated versus bare management modes. We tried

to select three fields per class and landscape, resulting

in 15 fields per landscape. But, as it was not possible to

Fig. 1 Zoom to one of our sampling landscapes showing the binary nature of bare versus vegetated vineyard fields. The smaller map in

the right corner shows the location of our study area (black line) in the canton of Valais (grey surface), southern Switzerland

Table 1 Factorial sampling design to separate the effects of habitat amount and fragmentation, both measured at a 150 m scale

Habitat amount (PLAND 150 m): 0.04–81% Habitat fragmentation (PD 150 m): 14–1233 patches/100 ha

Low (0–40%) High (60–100%)

Low (0–40%) 28 34

High (60–100%) 18 16

Value ranges for habitat area and fragmentation, and number of replicates for each class are reported. Additionally, 24 fields of bare

ground vineyards (matrix), were included. In total, numbers add up to 120 sampling fields
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find enough replicates for all combinations in all

landscapes, we had to use a non-balanced design with

varying replicates per class (Table 1). Across 8

landscapes we sampled 120 fields in total. We also a

priori controlled for habitat variables such as slope and

aspect to make sure that our samples would be evenly

distributed among classes (ANOVA on linear model

with aspect: P = 0.102; with slope: P = 0.465).

Invertebrate sampling

Invertebrate sampling was conducted in 2015 and

2016. Four landscapes (60 fields) were sampled in

2015 and another four landscapes (60 fields) in 2016.

We sampled invertebrates during two sessions (late

April and late May) each year, with a sampling

duration of 1 week per session. Sampling fields were

generally small, ranging from 0.015 to 1.5 ha in size,

with an average size of 0.42 ha. Sampling was carried

out with two pitfall traps per field (500 ml plastic cup),

each being a quarter filled with a mixture of water and

ethylene glycol (1:1) and a scentless detergent to lower

water surface tension. After each trapping session, we

collected the traps from the fields and stored the

trapped specimens in 70% ethanol. Out of 240 trap

samples, 29 (12%) were damaged or missing and thus

discarded from the dataset. We recorded the number of

specimens in each trap and sorted them by taxonomic

order (see supporting material). Ants were excluded

from the dataset due to their spatially clumped

aggregations if colonies were nearby a sampling

point. Traps belonging to the same field were pooled

for the analysis.

Environmental variables

We selected a suite of topographic, climatic and

compositional variables (Table 2) that were poten-

tially important in predicting invertebrate abundance

patterns in addition to habitat amount and fragmenta-

tion of vegetated fields. All topographic (3 variables)

and climatic (2 variables) variables were computed

based on a digital elevation model DEM raster

(25 m 9 25 m, source: Swiss Federal Office of

Topography) using the Geomorphometry and Gradi-

ent Metrics Toolbox (Evans et al. 2014) in ArcGIS

(ESRI 2015). The compositional variables included

the NDVI raster from 2013 and a landcover raster

which was reclassified into six classes representing the

major land cover categories in our study area

(Table 2). All raster layers were resampled to 5 m

resolution, projected to the same coordinate system

and clipped to the same extent prior to all analyses. We

analyzed 10 spatial scales of environmental variation,

ranging from 50 m to 500 m radii in 50 m increments.

For the topographic, climatic and the NDVI rasters,

we calculated focal means across the 10 spatial scales

using the focal statistics tool in ArcGIS, which

calculates the mean of that variable within a circle of

a specified radius around the center pixel. For the

landcover rasters, we calculated six different metrics

(4 landscape level and 2 class level) with FRAG-

STATS (McGarigal et al. 2012) that were chosen

following previous work showing that they were

strong indicators of fragmentation effects on habitat

suitability (e.g., Grand et al. 2004; Chambers et al.

2016) and connectivity (Cushman et al. 2013) influ-

encing species distribution patterns: (1) class level

PLAND; (2) class level correlation length, a measure

of habitat extensiveness (GYRATE_AM); (3) land-

scape level PD; (4) landscape level contrast weighted

edge density, which weights the length of edges by

standardizing the contrasts between different habitat

classes to a per unit area basis (CWED); (5) landscape

level Shannon diversity index, as a measure for habitat

type diversity (SHD); and (6) landscape level aggre-

gation index, which gives the frequency with which

cells of the same patch type are adjacent (AI). We also

calculated class level PLAND and PD of vegetated

vineyard fields at the same 10 spatial scales as proxies

for habitat amount and fragmentation of vegetated

vineyard fields for the multi-predictor, multi-scale

modeling.

Scale optimization and covariate pre-selection

There were two steps in the scale optimization

process. First, univariate models for all scales were

fitted to identify the best scale per covariate, based on

lowest AICc (Burnham and Anderson 2002). We used

generalized linear mixed effect models (glmer R

package lme4, Bates et al. 2015) with a Poisson

distribution and field ID as a random factor. Overdis-

persion was tested (using the function dispers_glmer;

R package blmeco, Korner-Nievergelt 2015) and if

necessary an observation level random effect OLRE

was included (Bolker et al. 2009). Second, collinearity

among the scale-optimized variables was tested with
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Spearman correlation. For pairs of intercorrelated

variables with |r|[ 0.7 (Dormann et al. 2012) the

variable with the lower AICc in the univariate model

was retained in the modelling. To avoid overfitting of

the final model relative to the sample size, we reduced

numbers of covariates by selecting only those with a

P\ 0.1 in the univariate models. This resulted in a

total of nine final variables for the modelling. To

account for potential non-linear relationships, we

compared linear and quadratic univariate models

among the final covariates and selected the better

function according to lower AICc values (R function

poly, package stats, R Development Core Team 2018).

All final variables performed better using the linear

term except for PLAND of vegetated vineyard fields,

which entered the full model with the linear and

quadratic terms. Spatial autocorrelation between

invertebrate sampling locations was tested by first

Table 2 All initial covariates, their description, data types, metrics calculated and best scales based on scale optimization (univariate

models) are shown

Category Covariate Description Data type Metric Best scale

(m)

Topographic Slope Slope DEM 25 m FocalStatistic 450

Slope pos Slope position index DEM 25 m FocalStatistic 300*

Rough Roughness DEM 25 m FocalStatistic 100

Climatic CTI Compound topographic index DEM 25 m FocalStatistic 450

Solrad Solar radiation index DEM 25 m FocalStatistic 500*

Compositional NDVI Mean NDVI Satellite images (2013, 2 9 2 m) FocalStatistic 50

Field

type

Vegetated versus bare fields Vineyard shapefile and NDVI

raster

PLAND 50*

PD 450*

LC Landcover on landscape level Landcover shapefile SHD 50

CWED 100

AI 50

PD 50

Resid Residential area Landcover shapefile PLAND 500

Correlation

length

450*

Roads Roads, railways Landcover shapefile PLAND 200*

Correlation

length

150

Agri Managed green surfaces Landcover shapefile PLAND 500*

Correlation

length

100*

Vine Vineyards Landcover shapefile PLAND 50

Correlation

length

50

Steppe Steppe, rocky and bare

grounds

Landcover shapefile PLAND 150*

Correlation

length

500

Forest Forests and groves Landcover shapefile PLAND 100

Correlation

length

300

PLAND percentage of landscape, SHD Shannon diversity of patch types, CWED contrast-weighted edge density, AI aggregation

index, PD patch density

Only the variables with an asterisk (*) were included in the final multi-scale model. Correlation length area-weighted mean of radius

of gyration (extensiveness)
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creating a neighborhood list (function dnearneigh r

package spdep, Bivand and Piras 2015; using a raw

distance of 500 m) and subsequently a spatial weights

matrix (function nb2listw package spdep). Moran’s I

(Legendre and Legendre 1998) test detected no

significant spatial autocorrelation of the residuals

(function moran.test package spdep).

Multi-scale model selection

All variables were standardized before entering the

multi-scale model by subtracting the mean and

dividing by the standard deviation to improve conver-

gence of the model fitting algorithms and to provide

meaningful comparisons based on the magnitude of

standardized regression coefficients. We fitted a full

glmer model (function glmer, R package lme4 Bates

et al. 2015) including all final variables at their

characteristic scales, field ID and OLRE as random

factors and using a Poisson distribution. Using the

dredge function (R package MuMIn, Bartón 2016,

using rank = AICc) the most competitive models with

a DAICc\ 2 were selected and we produced model

averaged coefficient estimates and SE, confidence

intervals, relative variable importance and P values

(function model.avg R packageMuMIn, Bartón 2016).

Finally, we estimated relative importance for each

variable present in the top model using a leave-one-

out-jack-knife procedure, where one variable at a time

was dropped from the top model and the subsequent

drop in AICc (DAICc) was calculated. To show effect

plots of all significant terms, we calculated model

averaged predictions using a Bayesian framework,

where we drew samples from the joint posterior

distribution with the function sim (arm R package,

Gelman and Su 2015). Additionally, we tested whether

effects of fragmentation and habitat area of vegetated

fields are interdependent. To do so, we used the best

scale of each variable from the univariate scale

optimization and produced an interaction model

(PLAND*PD) using a glmer model with a Poisson

distribution and field ID and OLRE as random factors.

Single-scale models

The same final variables in the multi-scale model were

used for single-scale modeling, in which the scale

across all variables was held constant such that a full

single-scale model was produced at each of the 10

spatial scales described above (e.g., Wan et al. 2017).

We used the same analytical approach for the single-

scale models as for the multi-scale models (i.e. using a

glmerwith field ID and OLRE as random factors and a

Poisson distribution). The best scale was selected

based on the lowest AICc for a given scale and model

selection was performed using dredge and model

averaging for all competitive models with the

DAICc\ 2 rule.

All models were run on a sample size of 211 trap

samples and all statistical analyses were performed

with R (R Development Core Team 2018).

Results

We collected a total of 13,979 invertebrates (ants

excluded) across all replicates over all sessions and

both years (4089 in April 2015, 3819 in May 2015,

3126 in April 2016 and 2945 in May 2016). On

average, 66.25 ± 34.54 individuals were caught per

field (range 15–205).

Optimized scales and variable selection

The scale optimization showed strong variation in best

scales among the variables (Table 2), with climatic

and topographic variables having generally broad-

scale effects. The habitat amount of vegetated vine-

yards was most important at a field scale (50 m), while

fragmentation had broad-scale effects (450 m) with no

significant effects at finer scales. There was no

significant interaction between PLAND and PD of

vegetated fields at their optimal scales (PLAND

50 m*PD 450 m: estimate ± SE = -

0.04149 ± 0.04576, z = - 0.91, P = 0.365). For the

landcover classes, habitat amount and correlation

length performed best at intermediate to broad scales

(Table 2).

Multi-scale model selection

Invertebrate abundance was strongly driven by

PLAND of vegetated vineyards at a field scale (50 m

radius), with a relative AICc importance of 35%

(Table 3). PLAND of steppes was the second most

influential variable, with relative AICc importance of

18.6%. The third and fourth most influential variables

were solar radiation (relative AICc
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importance = 11.7%) and PLAND of agricultural land

(11.1%). Patch Density of vegetated vineyards had a

relative AICc importance of 7.7%.

Invertebrate abundance peaked when there was

approximately 60% cover of vegetated surfaces within

50 m and decreasing slightly if PLAND was above

60% (Table 3, Fig. 2a), while areas with high PD at a

450 m scale supported lower number of invertebrates

(Table 3, Fig. 2b). Also, PLAND of steppes was

negatively related to abundance, even with only small

proportions of steppe habitats being present within

150 m scale (0–9%; Fig. 2c). Higher solar radiation

and PLAND of agricultural area, both at 500 m scale,

enhanced abundance (Fig. 2d, e) and also slope

position index at 300 m and percentage of roads at

200 m had positive effects (Fig. 2f, g). The top model

had a conditional R2 = 0.495.

Single-scale models

The best scale for the full single-scale modeling was at

50 m with an AICc of 2006.5 ranging up to 2012.7 at a

250 m scale, thus being considerably higher than the

full multi-scale model (AICc = 1979.84; Fig. 3). At

this scale (50 m) only PLAND of vegetated vineyards

(linear and quadratic term) among the final nine

variables was present in the two top models with

DAICc\ 2 after model selection, while all other

predictors were discarded. PLAND of vegetated fields

had a strong positive linear and negative quadratic

effect on invertebrate abundance (Table 3) and the top

model at this scale had an AICc of 1996.67.

Discussion

The innovative aspect of this study is that it used an a

priori sampling stratification design to separate habitat

amount and fragmentation effects in combination with

multi-scale optimization modeling, which, although

suggested more than 15 years ago by McGarigal and

Cushman (2002), is still rarely seen in the literature.

Thus, by relying on a quasi-experimental approach,

we were able to achieve landscape-level replication

across controlled gradients of area and fragmentation,

which McGarigal and Cushman (2002) argue is

essential to obtain strong inferences about fragmenta-

tion effects.

Our first research question was focused on whether

habitat area or fragmentation affect invertebrate

Table 3 Model averaged estimates, standard errors, z values,

2.5% and 97.5% confidence intervals, relative importance

(DAICc) and P values are given for all 9 covariates present in

the top models for the multi-scale approach and the only

variable which was present in the top single-scale model with

DAICc\ 2

Covariate Estimate SE z value 2.5% CI 97.5% CI DAICc (%) P value

Multi-scale model

(Intercept) 4.07127 0.0339 119.382 4.004431 4.138112 – \ 0.001

PD fields 450 m - 0.13021 0.03753 3.449 - 0.2042 - 0.05623 3.09 (7.7%) \ 0.001

PLAND agri 500 m 0.08883 0.03403 2.594 0.021718 0.15594 4.45 (11.1%) 0.009

PLAND fields 50 m 1.99009 0.51423 3.848 0.976412 3.003777 14.11(35.3%) \ 0.001

(PLAND fields 50 m)2 - 1.1269 0.53082 2.111 - 2.17331 - 0.08048 3.2 (8%) 0.035

PLAND steppes 150 m - 0.11953 0.03539 3.357 - 0.18931 - 0.04975 7.45 (18.6%) \ 0.001

Slope position 300 m 0.0774 0.03521 2.185 0.007985 0.146821 3.02 (7.5%) 0.029

Solar radiation 500 m 0.09831 0.03552 2.751 0.028267 0.168344 4.68 (11.7%) 0.006

PLAND roads 200 m 0.08738 0.03543 2.452 0.017523 0.157246 – 0.014

Single-scale model at
50 m

(Intercept) 4.0729 0.1094 37.001 3.857118 4.288598 – \ 0.001

PLAND fields 50 m 1.7386 0.5445 3.174 0.664972 2.812161 9.21 (82%) 0.002

(PLAND fields 50 m)2 - 1.1638 0.5654 2.046 - 2.27863 - 0.04896 2 (18%) 0.041

Variable importance was calculated as the drop in DAICc when the respective variable was removed from the top model and relative

importance is given in brackets (no value for PLAND roads as it was not present in the top multi-scale model)
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abundance more strongly. Similar to previous studies

focusing on various diversity metrics (Fahrig 2013;

Melo et al. 2017; Seibold et al. 2017), our results

revealed, that habitat amount is more important than

fragmentation in explaining invertebrate abundance.

The second question was about their relative impor-

tance and if there was an interaction between habitat

area and fragmentation. Based on AICc, the relative

importance of habitat amount was estimated to be

about seven times greater than the fragmentation

degree, although the latter still showed significant and

substantial negative effects on invertebrate abun-

dance. Thus, consistent with results for species

diversity measures (Fahrig 2003) habitat area appears

more important than fragmentation in our study

system as well. Yet, contrary to the assertion of Fahrig

(2013), habitat fragmentation additionally was an

important and significant predictor in explaining

abundance patterns. Importantly, we did not detect

an interaction between area and fragmentation of

vegetated vineyards, which suggests that for inverte-

brate abundance there is not a pattern of increasing

effect of fragmentation with decreasing habitat area,

as has been seen in a number of previous studies (e.g.,

Flather and Bevers 2002; Rybicki and Hanski 2013;

Hanski 2015).

In our study, fragmentation showed negative effects

at a rather broad scale (450 m scale), which is

Fig. 2 Model averaged

abundance predictions from

Poisson regression models

with 95%—Bayesian

credible intervals (grey

areas) are shown for the

seven significant variables

based on multi-scale

modeling. a Habitat amount

(PLAND) of vegetated

vineyards at 50 m scale. b

Fragmentation (PD) of

vegetated vineyards at

450 m scale. c PLAND of

steppes within 150 m scale.

d Solar radiation within

500 m scale. e PLAND

covered by agricultural land

at 500 m scale. f Slope

position index within 300 m

scale. g PLAND of roads

within 200 m scale. All

variables present in the top

models, except the one

under consideration, were

fixed at their mean values for

projections. Lightgrey

circles show raw data
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consistent with other invertebrate studies. For exam-

ple, edge effects on beetle abundance were strongest

beyond a 250 m scale (Ewers and Didham 2008) and

positive connectivity effects on invertebrates inhabit-

ing green roofs were observed within 200–400 m

scales (Braaker et al. 2014). Thus, in line with those

previous findings, this study shows that negative

effects of fragmentation on ground dwelling inverte-

brate abundance at broad scales may act on a

population rather than an individual level, possibly

due to increased edge effects if fragmentation is high,

resulting in a loss of dispersing individuals within the

hostile matrix.

Habitat amount had much stronger effects than

fragmentation and influenced invertebrate abundance

most strongly at a fine scale of 50 m radius. At this

scale, an effect of habitat amount can mainly be

explained by the binary partition of management

modes into vegetated and bare vineyard grounds (i.e.

habitat and matrix fields) and underpins the positive

effect of ground vegetation in vineyards at field scales

(Winter et al. 2018). For ground dwelling inverte-

brates, which we mainly caught with pitfalls, ground

vegetation may only be a limiting factor within small

areas, as small bodied and less mobile invertebrates

have smaller home ranges and dispersal radii (e.g.,

Bowman et al. 2002). Studies on a wide range of other

animal taxa have stressed the importance of habitat

amount over fragmentation, while most of these

studies focused on forest birds (e.g., Trzcinski et al.

1999; Radford and Bennett 2007) and some on rodents

(Mortelliti et al. 2011) and herbivorous insects (Hol-

land and Fahrig 2000).

Overall, this study shows that identifying the scale

of effect for habitat configuration patterns on a

biological response is crucial to detect potential

adverse effects (Martin and Fahrig 2012; McGarigal

et al. 2016). We only detected negative fragmentation

effects on invertebrate abundance at a broad scale of

450 m, whereas habitat amount was most important at

field scales (50 m), implying that such relationships

could have remained undetected if measured at a

single or inappropriate scales (Holland et al. 2005;

Fahrig 2013). Drawing conclusions from this finding,

we argue that previous contrasting results debating

about whether habitat amount or fragmentation is

more important, to a certain degree, may also be a

matter of scale. We propose to consider both effects in

future research (e.g., Schüepp et al. 2014; Haddad

et al. 2017), given that their ‘‘scales of effect’’ (Martin

and Fahrig 2012) are tested within a multi-scale

framework.

Our third research question focused on identifying

which environmental variables, in addition to area and

fragmentation of vegetated vineyards, affect inverte-

brate abundance. Indeed, a number of other environ-

mental variables were also influential. For example,

solar radiation index at the broadest scale (500 m) was

a strong predictor and had a significant and positive

impact on invertebrate abundance, indicating that

warmer soil and ambient temperatures potentially

promote greater net primary productivity, faster

growth and maturation of invertebrates, thus boosting

their abundance (e.g., Coxwell and Bock 1995). Also,

the proportion of roads in the landscape at a 200 m

scale had a positive effect, indicating that with

increasing number and area of roads within a 200 m

distance, invertebrates increased in numbers. Dirt

(non-asphalted) tracks are the most abundant road type

in vineyards and their positive effect is therefore most

Fig. 3 AICc values for the full models are shown for all 10

single-scale models (black circles) and the full multi-scale

model (horizontal dashed line at AICc=1979.84), showing that

among the single-scale models the one at 50 m performed best

having an AICc of 2006.5 (vertical red line) and that the full

multi-scale had best model performance compared to any

single-scale model. (Color figure online)
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likely driven by ‘‘more natural’’ areas and adjacent

herbaceous vegetation along the margins of dirt tracks,

which are less frequently used by cars than asphalted

roads. Hence they do not represent a highly artificial

feature, fragmenting the habitat, as shown in other

studies (e.g., Eigenbrod et al. 2008; Fahrig and

Rytwinski 2009). In contrast, the amount of steppe

habitat had negative effects on invertebrate abundance

at a 150 m scale, and this at very low proportions

(0–10%). In our study area, steppe habitats represent

the most unproductive natural (climactic) habitat

remnants. Their intrinsic low primary productivity

may not only explain why they were not converted into

vineyards but also why they harbor so little entomo-

fauna. Overall, our results show that, while the area of

vegetated vineyards is particularly important, inverte-

brate abundance is further driven by a number of

abiotic and anthropogenic factors, each at their

characteristic scale. This suggests that habitat analyses

and in particular studies on the effects of habitat

amount versus fragmentation should adopt a scale-

explicit, multi-predictor approach, rather than relying

on a binary conceptual model (e.g., Cushman et al.

2010).

Our fourth research question focused on whether

multi-scale optimization across several predictor

variables improved predictions of invertebrate abun-

dance, as has been found by many other researchers

(e.g., McGarigal et al. 2016). Multi-scale modeling

confirmed that testing the characteristic scale for each

covariate and subsequently analyzing species habitat

relationships using a multi-scale framework resulted

in better model performance and clearer inferences

compared to single-scale modeling. Specifically, the

scale optimized model had full AIC weight in

comparison to any of the single-scale models

(DAIC[ 25), indicating that the scale optimization

was essential to obtain a good model about the

environmental drivers of invertebrate abundance. This

study, therefore, adds to the considerable and increas-

ing evidence that species habitat relationships are

fundamentally scale dependent, and that multi-scale

optimization approaches are needed to obtain clear

predictions of species response to landscape charac-

teristics—in this case invertebrate abundance in

agricultural systems as function of extent and config-

uration of different management regimes, abiotic and

anthropogenic factors.

Conclusions

Our research provides three main insights. First, field-

scale habitat amount in vineyards has much greater

influence on invertebrate abundance than does frag-

mentation. Second, landscape-scale fragmentation

(PD at 450 m), however, provides significant and

substantial improvement to our models. Thus, assess-

ing habitat amount without fragmentation is not

sufficient to study biological responses. Third, inver-

tebrate abundance is strongly influenced by a set of

different variables in addition to habitat amount and

fragmentation of vegetated vineyards, each acting at

characteristic scales. Thus, multi-scale optimization

modeling is critical to obtain clear insights into the

ecological and environmental drivers of invertebrate

abundance, and simplistic binary representations of

habitat versus non-habitat as categorical mosaics is

inappropriate. The main management implication

suggests that efforts to increase the practice of

vegetated vineyards are likely a good strategy to

enhance invertebrate numbers in this agroecosystem,

while focus should be centered on augmenting the

fraction of ground-vegetated vineyards within the

landscape while enhancing their connectivity appears

to be less important.
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