
AUTHOR COPY ONLY
REPRODUCTIONRESEARCH

Modification of sperm fatty acid composition during 
epididymal maturation in bats

Nicolas J Fasel1,2, Kevin McMillian2, Ulrike Jakop1, Laurent Méné-Saffrané3, Kathrin M Engel4, 
Michel Genoud2,5, Karin Müller1 and Philippe Christe2

1Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany, 2Department of Ecology and Evolution, University 
of Lausanne, Lausanne, Switzerland, 3Department of Biology, Metabolomics and Proteomics Platform, University of 
Fribourg, Fribourg, Switzerland, 4Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 
Leipzig, Germany and 5Division of Conservation Biology, Department of Biology, Institute of Ecology and Evolution, 
University of Bern, Bern, Switzerland

Correspondence should be addressed to N J Fasel; Email: fasel.nicolas@gmail.com

Abstract

Biochemical properties of polyunsaturated fatty acids (PUFAs) are fundamental to sperm movements. Amongst all adjustments 
operated during epididymal maturation, sperm membrane lipid composition is remodelled. Specifically, the proportion of PUFAs 
usually increases from the caput towards the cauda epididymidis. In mammals, PUFAs are predominantly acquired through the diet, 
which can consequently impact male fertility. We aimed at analysing to what extent n-6 and n-3 PUFAs are incorporated into sperm 
in the Seba’s short-tailed bat (Carollia perspicillata), and at demonstrating the effect of the sperm fatty acid composition on sperm 
mobility. We therefore provided food varying in fatty acid composition to males of C. perspicillata and measured the fatty acid 
composition and mobility traits in spermatozoa collected from the caput and cauda epididymides. We found that n-6 and n-3 PUFAs 
and saturated fatty acids were significantly related to sperm velocity but not to the proportion of progressive sperm (i.e. motility). 
Concomitant to an increase in sperm velocity, the level of fatty acid saturation increased from the caput to the cauda epididymidis, 
while the proportion of PUFAs remained similar along the epididymis. A reduction in n-6 PUFAs counterbalanced an increase in n-3 
PUFAs. The food treatments did not affect the sperm fatty acid composition. Our results suggest that a precise endogenous control 
rather than dietary effects determines sperm fatty acid composition in C. perspicillata.
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Introduction

In mammals, gametes have evolved anisogamously, with 
large oocytes and small motile sperm cells (Cummins 
& Woodall 1985). However, when they are released 
from the testes, spermatozoa are mostly immotile 
and require biochemical alterations provided during 
epididymal maturation in order to gain motility and the 
capacity to fuse with eggs (Aitken et  al. 2007). Along 
the epididymis, these modifications are triggered by 
varying microenvironments generated by the epithelium 
in precise locations of the organ (Aitken et  al. 2007, 
Gervasi & Visconti 2017).

In most species studied so far, mature sperm cells 
from the cauda epididymidis comprise a higher 
proportion of polyunsaturated fatty acids (PUFAs), and 
especially of n-3 PUFAs (also referred to as omega-3 
fatty acids) in comparison to those from the caput (Parks 
& Hammerstedt 1985, Hall et al. 1991, Aveldaño et al. 
1992, Haidl & Opper 1997, Pyttel et al. 2014, Angrimani 
et  al. 2017). PUFAs possess molecular properties 

which increase membrane fluidity and influence trans-
membrane protein activities (Giroud et al. 2013, Pinot 
et al. 2014, Arnold et al. 2015).

The vigorous movements of mature sperm cells may 
require a flexible membrane and an elevated metabolic 
rate (Stubbs & Smith 1984, Lenzi et al. 1996, Kho et al. 
2001, Ren et al. 2001, Storey 2008). Sperm velocity and 
motility have consistently been positively correlated to 
the PUFA content of sperm cells (Nissen & Kreysel 1983, 
Mourvaki et al. 2010). It has been repeatedly shown that 
n-3 PUFAs improve sperm quality significantly more 
than n-6 PUFAs (reviewed in Esmaeili et  al. 2015). 
Nevertheless, it remains unclear why both types of 
PUFAs may differently impact sperm biology. PUFAs are 
essential to most mammal species in the sense that they 
are not produced de novo (Burr & Burr 1930) and should 
be acquired through the diet. After their incorporation, 
PUFAs can be elongated and desaturated to generate 
the long-chain PUFAs potentially missing in the diet. 
Human and livestock diets have been designed in 
order to improve sperm quality by modifying their lipid 
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composition (Strzeżk et  al. 2004, Brinsko et  al. 2005, 
Estienne et al. 2008, Gliozzi et al. 2009, Mourvaki et al. 
2010, Gulliver et  al. 2012, Fair et  al. 2014, Esmaeili 
et al. 2015, Maranesi et al. 2018).

Sperm competition, the post-copulatory competition 
of sperm from several males for the fertilisation of a 
given set of eggs (Parker 1970), can drive the evolution 
of faster sperm with higher rate of metabolism (Burness 
et  al. 2004, Malo et  al. 2005, Tourmente et  al. 2013, 
Fitzpatrick & Lüpold 2014, Klemme et  al. 2014). An 
efficient incorporation of PUFAs within the sperm 
membrane should thus have evolved in species 
facing post-copulatory competition to promote 
sperm competitiveness.

The mating system of Seba’s short-tailed bat (Carollia 
perspicillata) is classified as a resource defence 
polygyny (Fleming 1988, McCracken & Wilkinson 
2000). Harem males share reproduction with bachelor 
and peripheral males (Fasel et  al. 2016) and males 
have relatively large testes (Orr & Zuk 2013). Both 
arguments suggest that sperm competition occurs in 
this species. C. perspicillata mostly feeds on the fruits 
of piper plant’s (Piperaceae), but can also complete 
its diet with Arthropoda (Mello et al. 2004) or leaves 
(Pereira et  al. 2018). Dietary fatty acid composition 
could thus vary. Changes in nutritional sources can 
potentially affect sperm membrane composition and 
post-copulatory competitiveness.

In this study, male C. perspicillata were given two 
dietary treatments differing in n-3 and n-6 PUFA content 
but similar in their overall PUFA proportion. The first 
aim was to measure the effects of the dietary treatments 
on the fatty acid composition of sperm cells collected 
from the caput and cauda epididymides. This will assess 
the incorporation of PUFAs within sperm cells along the 
epididymis. If dietary fatty acids were readily assimilated 
and unselectively incorporated in the sperm lipids, 
differences in the sperm fatty acid composition should 
reflect those of the food. A second aim was to measure 
the effects of the different fatty acid classes and of the 
location along the epididymis on in vitro sperm mobility 
traits. As PUFAs render membranes more flexible and 
increase cell metabolism, the proportion of PUFAs in 
sperm of C. perspicillata should be positively correlated 
with sperm mobility traits. Ultimately, epididymal 
maturation should lead to better sperm mobility in the 
cauda than in the caput epididymidis.

Materials and methods

Ethical statement

The veterinary office of the Canton Fribourg, after supervision 
of the Cantonal Ethical Committee, authorised the 
experimental setup and the detention conditions (2016_27_
FR). Laboratory analyses were performed blind with respect 
to sample identity.

Animal housing

Bats were collected from a captive population, having free 
access to a tropical dome mimicking a Belizean dry forest 
(Papiliorama, Kerzers, Switzerland). Thirty C. perspicillata 
males were individually marked (PIT tags) and housed in five 
cages (dimensions: 1 × 2 × 2 m), with six individuals per cage. 
Temperature ranged between 25 and 30°C and humidity 
reached more than 80%. The light-cycle was reversed and 
based on a 12L:12D cycle. Food consisted of mashed fruits 
and vegetables (apples, grapes, boiled carrots and bananas), 
complemented with vitamins, yeast, honey and grape sugar. 
Every night, 160 g of food was provided per cage during 6 h of 
the dark phase. This feeding regime simulated the conditions 
occurring during the dry season, when fruiting plants are sparse 
and rare. Most copulations in this species occur during the 
dry season (Fleming 1988). Water was provided ad libitum. All 
individuals were given a minimum of 1 week of acclimation 
to these conditions before the food treatments were started.

Experimental design

The experiment lasted 4  weeks. Males were equally and 
randomly assigned to one of the two treatments, hereafter 
named n-3 and n-6 PUFA treatments. One cage contained 
six males, three from each treatment. Twice a week, males 
of each cage were captured and separated in two different 
cages to feed on their respective food treatment. On the days 
of treatments, 1.1 mL of flaxseed oil (n-3 PUFA treatment) or 
0.9 mL of sunflower oil mixed with 0.2 mL flaxseed oil (n-6 
PUFA treatment) were added and thoroughly mixed to 80 g of 
the daily food ration. On some occasions (N = 8), we collected 
faeces after treatment and analysed the fatty acid composition. 
Compared to the n-3 PUFA treatment, faeces collected 
from bats feeding on the n-6 PUFA treatment contained a 
significantly larger proportion of n-6 PUFAs (linear mixed 
model with logit transformation of the response variable: 
estimate: 1.19 ± 0.26, F1,6 = 21.29, P = 0.004, R2 = 0.78) and 
a significantly lower proportion of n-3 PUFAs (linear mixed 
model with logit transformation of the response variable: 
estimate: −1.50 ± 0.41, F1,6 = 13.27, P = 0.011, R2 = 0.69).

Sperm collection

After 4  weeks of treatment, males were killed via an 
intraperitoneal overdose of sodium pentobarbital and an 
orchiectomy was performed. Epididymides were separated 
from the testes and blood vessels were removed. Caput and 
cauda epididymidis were separately minced in 100 µL of 
HEPES buffer solution (HBS: 150 mM NaCl, 5 mM HEPES, pH 
7.4). Sperm were filtered using a 30 µm filter (Partec, Münster, 
Germany) and rinsed with 100 µL of HBS. From the mix, 3 µL 
was used for the mobility analysis. The mix was then centrifuged 
(600 g, 5 min) to remove the supernatant and washed twice 
with 200 µL of HBS. In samples with a visible pellet, the pellet 
was finally suspended in 50 µL of HBS and split in two tubes. 
Only 25 µL of HBS were added to samples with a lower amount 
of sperm and those were not split. Finally, 25 µL of butylated 
hydroxytoluene (BHT, antioxidant, 2 mg/mL) diluted in 100% 
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MeOH were added to the washed sperm samples. Samples 
were then placed on dry ice until reaching the lab where they 
were frozen at −70°C until analysis.

Sperm mobility analysis

Sperm motion was video-recorded using a Kappa CF 8/5 
camera mounted on an Olympus XK41 microscope set 
with 200× magnification under dark-field conditions. Three 
microlitres of filtered sperm (i.e. before the centrifugation) were 
injected in a 20-μm-deep chamber slide (SC 20-01-04-B, Leja, 
Netherlands) within 10 min after dissection. Three 2-s videos 
at a frame rate of 50 Hz were then analysed for each sample 
using a CASA plug-in in ImageJ 1.47v (Rasband, National 
Institute for Health, USA; Wilson-Leedy & Ingermann 2007) to 
measure sperm velocity (i.e. curvilinear velocity (VCL), μm/s) 
of progressive sperm cells. As previously reported (Fasel et al. 
2015), measures of VCL significantly correlated to the other 
swimming parameters (Table 1) calculated by CASA, with the 
single exception of the linearity (NJ Fasel 2018, unpublished 
data). Sperm motility (i.e. the proportion of progressive sperm) 
was estimated subjectively by a unique observer (KMc) and 
significantly correlates to the CASA estimation (linear model 
with CASA estimation as explanation of subjective measures, 
the intercept forced to zero and both variables arcsine square 
root transformed: estimate: 0.87 ± 0.04, F1,131 = 451.43, 
P < 0.001, R2 = 0.79). Finally, the mean of the mobility measures 
per sample (three videos) was calculated.

Fatty acid analysis

Fatty acid methyl esters (FAMEs) were prepared by incubating 
samples (20 µL) with 1 mL of 5% (v/v) H2SO4 in MeOH in the 
presence of 0.1% (w/v) BHT. The transesterification reaction 
was performed in a dry block heater (VWR, Dietikon, 
Switzerland) at 85°C for 30 min. At the end of the reaction, 
tubes were cooled down to room temperature, briefly spun 
down, and 1.5 mL of 0.9% (w/v) NaCl and 2 mL of n-hexane 
were added to the solution. The mixture was strongly shaken 
for 5 min and both organic and hydroalcoholic phases were 
separated by centrifugation at 1500 g for 5 min. The upper 
organic (n-hexane) phase was transferred into a new glass 
tube. The n-hexane phases were evaporated under a nitrogen 
flux and FAMEs were re-suspended in 30 µL of n-hexane. 
FAME samples were transferred into 0.2 mL crimp vials (BGB 
Analytik, Genève, Switzerland) prior to injection into the gas 
separator to perform gas chromatography (GC).

FAMEs were analysed using a gas chromatograph coupled 
to a flame ionisation detector (Agilent 7890A). FAME samples 
dissolved in n-hexane were introduced to the injection port 
heated to 250°C with an automated liquid sampler (Agilent 
7993). The samples were injected without splitting. FAMEs 
were separated on a 30-m long × 0.25-mm ID × 0.25 μm DB-23 
capillary column (Agilent) using He as vector gas (2.6 mL/min). 
The oven temperature, initially set to 100°C for 2 min, was first 
increased to 160°C at 25°C/min, then to 250°C at 8°C/min 
and maintained at this temperature for an additional 4 min. 
The detector temperature was set to 270°C while detector 
gases were set to 30 mL/min for H2, 400 mL/min for air, and 
30 mL/min for makeup gas (He). Data were recorded at a 
frequency of 50 Hz. FAME quantifications were performed 
with calibration curves built with the Supelco 37 component 
FAME mix (Sigma-Aldrich) using 17:0 methyl ester as the 
internal standard (250 ng). FAME determination was based on 
the retention times of each component and compared with 
those of FAMEs contained in Supelco 37 FAME mix (Sigma-
Aldrich) and of 22:5 n-3 and 22:5 n-6.

Statistical analysis

The different types of FAMEs were classified as PUFAs, 
monounsaturated (MUFA) or saturated fatty acids (SFAs). Within 
the PUFA class, the n-6 and n-3 PUFAs were distinguished. The 
proportions of each fatty acid class over the total amount of 
FAMEs measured were calculated. Analyses were conducted 
with R (version 3.3.2).

First the effects of the treatments and of the location in 
the epididymis (caput vs cauda) on the sperm fatty acid 
composition were estimated. The response variables (i.e. 
fatty acid class proportions) were logit transformed. Then, 
to account for the small sample size and the large variance 
in some fatty acid classes, robust linear mixed models were 
run (function: rlmer, package: robustlmm; Koller 2016). The 
null hypothesis was rejected when the 95% CI of an effect 
estimation did not include 0. As explanatory variables, the 
treatments, the parts of the epididymis and the interaction 
between them were considered. The cage number and the 
identity of the male, nested within the cage number, were 
considered as random factors.

Secondly, the effects of the sperm fatty acid classes and of 
the location in the epididymis on sperm velocity and motility 
were evaluated. VCL and the subjectively estimated motility 
were used as response variables. Motility was transformed with 
arcsine square root, which is more appropriate than the logit 

Table 1 Mobility traits in C. perspicillata sperm from caput (CAP) and cauda (CAU): CASA motility (MOT, proportion), subjective motility 
(MOTs, proportion), curvilinear velocity (VCL, µm/s), straight line velocity (VSL, µm/s), average path velocity (VAP, µm/s), progression (PROG, 
µm), beat cross frequency (BCF), wobble (WOB) and linearity (LIN, VSL/VAP).

MOT MOTs VCL VSL VAP PROG BCF WOB LIN

CAP
 Mean 0.056 0.056 26.667 7.270 11.202 15.397 23.388 0.376 0.661
 s.e. 0.084 0.082 13.264 5.856 7.810 10.596 8.122 0.115 0.146
CAU
 Mean 0.089 0.083 32.832 12.388 15.494 16.863 22.839 0.413 0.754
 s.e. 0.080 0.111 13.753 8.389 9.715 8.396 6.486 0.121 0.108

Means and standard errors (s.e.) are reported.
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transformation when data contain 0-values. As explanatory 
variables, the proportions of the classes of fatty acids (n-6 
and n-3 PUFAs, MUFAs and SFAs) were analysed individually 
in four different models. Combining all classes of fatty acids 
in one single model would not have been possible because 
of collinearity. The part of the epididymis and its interaction 
with the fatty acid classes were also included as explanatory 
variables. Logit-transformed proportions were centred around 
the mean values per epididymis in order to interpret the effect 
of the epididymis part as a main effect but also in interaction 
with the classes of fatty acids. Male identity and cage number, 
with male identity nested within cage number, were considered 
as random factors. Robust linear mixed models (function: 
rlmer, package: robustlmm) were run. The null hypotheses 
were rejected when the 95% CI of an effect estimation did not 
include 0. For all above analyses, non-significant interactions 
were discarded (Engqvist 2005).

Results

The interaction between the treatment and the 
epididymis parts had never a significant effect on the 
proportions of n-3 (CI: −0.359 to 0.228) and n-6 PUFA 
(CI: −0.229 to 0.409), MUFA (CI: −0.398 to 0.163) 
and SFA (CI: −0.036 to 0.281) in the sperm cells and 
was consequently discarded from the models. The food 
treatments did not trigger significant changes in any of 
the fatty acid classes (Table 2). Sperm from the cauda 
epididymidis had higher proportion of n-3 PUFAs and 
SFAs, and a lower proportion of n-6 PUFAs and MUFAs 
in comparison to those from the caput part (Fig.  1). 
However, the proportion of total PUFAs did not vary 
along the epididymis (Table  2). The mean percentage 
and standard deviation for each fatty acid type and class 
are listed in Table 3.

Sperm VCL was not affected by the different classes of 
fatty acids in interaction with the part of the epididymis: 
n-3 (CI: −33.482 to 2.314) and n-6 PUFAs (CI: 
−31.870 to 13.115), MUFAs (CI: −27.806 to 39.775) 
and SFA (CI: −21.867 to 30.229). Those interactions 
were consequently removed from the final models. 
The proportions of n-3 and n-6 PUFAs were positively 
correlated with sperm VCL (Fig. 2), while the proportion 
of MUFAs did not significantly affect sperm VCL. Finally, 
the proportion of SFAs affected negatively this variable 
(Fig.  2 and Table  4). Sperm VCL was consistently 
significantly higher in the cauda epididymidis (Table 4). 
Analysed individually, the different classes of fatty acids 
did not affect sperm motility in interaction with the part 
of the epididymis: n-3 (CI: −0.417 to 0.214) and n-6 
PUFAs (CI: −0.638 to 0.039), MUFAs (CI: −0.233 to 
0.722) and SFA (CI: −0.295 to 0.533). Those interactions 
were consequently removed from the final models. 
The different proportions of fatty acid classes were not 
correlated with sperm motility (Table  4). Finally, the 
sperm collected from the cauda epididymidis were not 
more motile than those from the caput (Table 4).

Discussion

In this study, we investigated to what extent sperm fatty 
acid composition can be affected by varying dietary 
n-6 and n-3 PUFA proportions in C. perspicillata. 
Furthermore, we described the changes in the fatty 
acid composition of the sperm lipids along epididymal 
maturation. Finally, we estimated the effects of fatty 
acid composition on sperm velocity and motility and its 
development along the epididymis.

Our results revealed that the transit through 
epididymis resulted in a higher swimming speed of the 
motile sperm recovered from cauda compared to caput 
epididymidis (Fig.  1), indicating sperm maturation. A 
higher velocity may reduce the time in the vagina and 
the uterus, where conditions are deleterious to sperm 
(Rasweiler et al. 2010). Despite the increase in velocity, 

Table 2 Effects of the dietary treatment and epididymis part on the 
proportion of the various fatty acid classes in sperm.

Estimate SE CI

n-3 PUFA (logit)
 Intercept −1.990 0.092 −2.169 to −1.810
 Treatment n-6 PUFA −0.110 0.075 −0.257 to 0.038
 Cauda epididymidis 0.359 0.074 0.214 to 0.504
n-6 PUFA (logit)
 Intercept −1.387 0.082 −1.547 to −1.227
 Treatment n-6 PUFA 0.154 0.080 −0.004 to 0.311
 Cauda epididymidis −0.211 0.080 −0.368 to −0.056
PUFA (logit)
 Intercept −0.747 0.101 −0.945 to −0.548
 Treatment n-6 PUFA 0.059 0.080 −0.097 to 0.215
 Cauda epididymidis 0.049 0.079 −0.105 to 0.203
MUFA (logit)
 Intercept −1.274 0.069 −1.410 to −1.138
 Treatment n-6 PUFA 0.030 0.079 −0.125 to 0.184
 Cauda epididymidis −0.364 0.079 −0.519 to −0.209
SFA (logit)
 Intercept −0.128 0.041 −0.209 to −0.048
 Treatment n-6 PUFA −0.034 0.047 −0.126 to 0.057
 Cauda epididymidis 0.101 0.047 0.010 to 0.193

Estimates, standard errors (s.e.) and 95% confidence intervals (CI) 
obtained with robust linear mixed models are given. The interaction 
terms were always not significant and were therefore removed from 
the final model.
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Figure 1 Proportion of PUFA in the sperm membrane from 
C. perspicillata. Median values per dietary groups (n-3 vs n-6 PUFAs) 
and per epididymis parts (caput and cauda) are indicated with a 
segment.
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the proportion of motile sperm in samples collected 
from the cauda epididymidis was surprisingly not higher 
than in samples from the caput. This result contrasts with 
those from other species (Dacheux & Dacheux 2014), 
bats included (Rodríguez-Tobón et  al. 2015). Mobility 
measures were recorded with sperm not swimming in 
seminal fluids but in HEPES buffer. The latter was not 
designed for sperm mobility analyses but allowed trait 
comparisons without influencing further lipid analyses. 
This sub-optimal buffer solution may explain the 
measures of motility and velocity lower than expected 
(Fasel et al. 2015).

The modification of the sperm membrane is one factor 
believed to allow sperm to gain in velocity. Accordingly, 
we showed that the proportions of both n-3 and n-6 
PUFAs were positively correlated to sperm velocity in C. 
perspicillata (Fig. 2), corroborating results found in other 
species (Mourvaki et  al. 2010, Maranesi et  al. 2018). 
PUFAs may increase the activity of trans-membrane 
proteins (Giroud et al. 2013, Arnold et al. 2015), which 
would then favour sperm movements (Stubbs & Smith 
1984, Kho et al. 2001, Ren et al. 2001, Storey 2008). 
In addition, PUFAs’ lower melting temperatures may 
provide sperm with a more flexible membrane, allowing 
more effective propulsion (Mortimer 1997, Pinot et al. 
2014). The negative correlation between SFA and VCL 

further supports that sperm with a membrane containing 
less saturated fatty acids are faster (Fig. 2). However, the 
concomitant increases in VCL and in SFA proportion 
measured along the epididymis recalls that other 
factors than the membrane fatty acid composition are 
also involved in sperm maturation and control sperm 
velocity (e.g. enhanced metabolism, morphological 
and osmolarity changes, protein incorporation, 
environmental molecular composition, etc.).

Changes in sperm fatty acids composition was 
shown to occur during epididymal maturation 
through the incorporation of lipids from the organ 
microenvironment (Parks & Hammerstedt 1985, Hall 
et  al. 1991, Aveldaño et  al. 1992, Haidl & Opper 
1997, Pyttel et al. 2014, Angrimani et al. 2017). Our 
measures in C. perspicillata confirmed that a change 
in the PUFA composition occurred during the passage 
from the caput to the cauda epididymidis, with a 
partial replacement of the n-6 PUFAs by the n-3 
PUFAs, without any significant change in the overall 
PUFA proportion. The importance of n-3 PUFAs in the 
performance of mammalian sperm has been repeatedly 
supported (reviewed in Esmaeili et  al. 2015). An 
increase in the proportion of n-3 PUFAs during the 
last stages of epididymal maturation is consequently 
not surprising.

Table 3 Percentage of the different fatty acids types and classes over the total amount of fatty acid methyl esters (FAMEs) measured in two parts 
of the epididymis of C. perspicillata, following 4 weeks of n-3 or n-6 PUFAs supplementation.

n-3 PUFA treatment, Mean ± s.d. n-6 PUFA treatment, Mean ± s.d.

Caput Cauda Caput Cauda

16:0 37.81 ± 0.89 37.16 ± 4.47 36.02 ± 5.89 36.96 ± 3.68
16:1 0.60 ± 0.70 0.46 ± 0.72 0.86 ± 0.60 0.15 ± 0.33
18:0 6.70 ± 1.46 11.13 ± 3.01 5.89 ± 2.22 10.50 ± 2.39
18:1 n-9 16.46 ± 3.41 13.34 ± 6.39 14.71 ± 5.70 11.88 ± 4.70
18:1 n-11 4.51 ± 0.49 4.18 ± 1.54 5.80 ± 4.88 5.18 ± 0.58
18:2 n-6 0.47 ± 0.63 1.38 ± 0.73 0.78 ± 0.59 1.29 ± 0.92
18:3 n-6 n.d. n.d. 0.43 ± 1.41 n.d.
18:3 n-3 n.d. n.d. 0.87 ± 2.89 n.d.
20:0 1.45 ± 0.55 0.76 ± 0.80 1.46 ± 1.25 1.95 ± 2.51
20:1 0.03 ± 0.11 n.d. 1.38 ± 4.37 n.d.
20:2 n-6 0.16 ± 0.39 n.d. 0.47 ± 0.62 n.d.
20:3 n-6 0.43 ± 0.56 0.73 ± 0.71 0.63 ± 0.52 0.66 ± 0.70
20:4 n-6 15.39 ± 2.06 9.04 ± 1.92 16.36 ± 2.59 11.60 ± 3.35
20:3 n-3 n.d. n.d. 0.21 ± 0.71 n.d.
20:5 n-3 0.04 ± 0.14 n.d. 0.25 ± 0.55 n.d.
22:0 n.d. n.d. 0.05 ± 0.18 n.d.
22:1 n.d. 0.19 ± 0.64 0.06 ± 0.20 n.d.
22:4 n-6 1.51 ± 0.95 2.12 ± 2.12 1.32 ± 1.04 2.17 ± 2.22
22:5 n-6 2.70 ± 2.38 3.11 ± 3.38 2.03 ± 1.45 2.87 ± 2.82
22:6 n-3 1.39 ± 0.99 1.09 ± 0.75 1.40 ± 0.83 1.15 ± 1.19
24:0 10.30 ± 2.29 15.30 ± 4.60 8.95 ± 2.19 13.63 ± 4.89
24:1 0.04 ± 0.12 n.d. 0.06 ± 0.20 n.d.
PUFA 32.40 ± 3.56 32.78 ± 8.59 33.71 ± 7.22 33.37 ± 9.74
MUFA 21.64 ± 3.44 18.18 ± 6.29 22.86 ± 2.84 17.22 ± 4.85
SFA 45.96 ± 1.85 49.05 ± 7.02 43.43 ± 7.91 49.41 ± 6.80
n6 20.66 ± 2.61 16.38 ± 4.84 22.02 ± 4.76 18.59 ± 5.92
n3 11.73 ± 2.18 16.39 ± 4.70 11.69 ± 3.27 14.77 ± 5.03

Means and standard deviations (s.d.) are reported.
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The observed maintenance in overall PUFA 
proportion can indicate a need to keep sperm 
membrane resistant to oxidative stress. Indeed, besides 
adjustments of antioxidant defences in response to 
external stressors (Losdat et  al. 2014, Rojas Mora 
et al. 2017), the fatty acid composition of the sperm 
membrane could be adjusted to its environment: 
species whose ejaculate will face elevated ROS levels 
might reduce the PUFA content of sperm membrane 
(delBarco-Trillo & Roldan 2014, delBarco-Trillo 
et  al. 2015). Ejaculates from C. perspicillata display 
low lipid peroxidation markers (Fasel et  al. 2017). 
This further supports that the proportion of PUFAs 
within sperm cells is under control during epididymal 
maturation to deal with an elevated metabolism 
and high ROS levels. Additionally, the measured 
reduction in MUFAs and the increase in SFA in the 
cauda epididymidis could further strengthen oxidative 
stress resistance. In sperm cells collected from the 
caput and cauda epididymidis of C. perspicillata, 
low but increasing amounts of plasmalogens were 
detected (U Jakop, NJ Fasel, L Méné-Saffrané, J 
Schiller, K Müller & KM Engel 2018, unpublished 
data). In these phospholipids, a SFA is generally fixed 
to the sn-1 position through an ether bond (Lenzi 
et  al. 1996, Pyttel et  al. 2014). Consequently, from 
sn-1 position no FAME was generated. This would 
even lead to a slight underestimation of SFAs along  
the epididymides.

In their comparative analysis, delBarco-Trillo 
and Roldan (2014) did not include any bat species 
and the proportion of PUFAs in sperm measured in 
C. perspicillata would be the second lowest of the 21 
species considered in that analysis. The sperm of some 
flying foxes have been shown to contain extremely 
low proportions of PUFAs (Melville et  al. 2012). The 
low proportions of PUFAs in the sperm of the few bats 
investigated so far could be related to an intense sperm 
competition (Orr & Zuk 2013), favouring increased 
sperm velocity but at the same time leading to a rise in 
ROS generation due to the boosted energy production 
(Burness et al. 2004, Tourmente et al. 2013, Fitzpatrick 
& Lüpold 2014, Klemme et al. 2014). Alternatively, high 
SFA proportions in bat sperm could be related to the 
capacity of many bat species to store sperm (Orr & Zuk 
2013). Indeed, a similar pattern was already shown in 
the sperm of bees which can be stored up to several 
years (Wegener et  al. 2013). It remains nevertheless 
unclear whether the capacity to store sperm has been 
lost in species like C. perspicillata or if its evolution 
is polyphyletic.

Ultimately, the variation in the dietary PUFAs did not 
affect the composition of the sperm neither in the caput 
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Figure 2 Curvilinear velocity (VCL) of caput and cauda sperm of 
C. perspicillata related to the n-3 PUFA, n-6 PUFA and SFA 
proportions over the total amount of FAMEs in the sperm cells.

Table 4 Effects of the proportion of the various fatty acid classes in 
sperm and of the epididymis part on sperm velocity and motility in 
C. perspicillata.

Estimate SE CI

Velocity
 Intercept 24.551 4.292 16.139 to 32.962
 n-3 PUFA 14.762 4.674 5.602 to 23.923
 Cauda epididymidis 7.294 3.113 1.194 to 13.395
 Intercept 24.464 3.209 18.174 to 30.754
 n-6 PUFA 11.789 5.014 1.962 to 21.616
 Cauda epididymidis 7.361 3.443 0.612 to 14.109
 Intercept 24.395 3.573 17.393 to 31.398
 MUFA −7.397 7.098 −21.309 to 6.515
 Cauda epididymidis 7.214 3.681 0.001 to 14.428
 Intercept 24.306 3.391 17.659 to 30.953
 SFA −18.251 6.807 −31.593 to −4.909
 Cauda epididymidis 7.379 3.313 0.885 to 13.872
Motility
 Intercept 0.175 0.039 0.098 to 0.251
 n-3 PUFA 0.122 0.074 −0.023 to 0.267
 Cauda epididymidis 0.047 0.047 −0.045 to 0.138
 Intercept 0.168 0.038 0.094 to 0.243
 n-6 PUFA 0.039 0.076 −0.110 to 0.188
 Cauda epididymidis 0.052 0.054 −0.053 to 0.158
 Intercept 0.168 0.038 0.094 to 0.243
 MUFA −0.080 0.099 −0.274 to 0.114
 Cauda epididymidis 0.053 0.054 −0.053 to 0.158
 Intercept 0.168 0.038 0.094 to 0.243
 SFA −0.057 0.104 −0.262 to 0.148
 Cauda epididymidis 0.052 0.054 −0.053 to 0.158

Motility values were arcsin-square root transformed. Estimates, 
standard errors (s.e.) and 95% confidence intervals (CI) obtained with 
robust linear mixed models are given. The interaction terms were 
always not significant and were therefore removed from the final 
models.
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nor in the cauda epididymidis (Fig. 2). The food delivered 
during the treatment days were expected to comprise 
approximately 70% of the weekly fat intake. The gut 
transit time in C. perspicillata is short (Bonaccorso & 
Gush 1987, Laska 1990), and the efficiency to extract 
lipids might be low. If the bats only incorporated a 
limited amount of fat during the treatment days, the 
effect of the dietary treatment on the sperm fatty acid 
composition might have been reduced. However, as 
already mentioned above, the proportion of PUFAs in 
mature sperm (i.e. in the cauda epididymidis) was low 
in comparison to other mammalian species investigated 
so far (delBarco-Trillo & Roldan 2014). Therefore, the 
absence of any significant effects of our dietary treatments 
may alternatively be explained by the need to maintain 
the sperm resistant to oxidative stress. Furthermore, 
feeding habits of C. perspicillata have been shown to 
vary seasonally (Mello et al. 2004, Pereira et al. 2018). 
As sperm production is maintained throughout the 
year (Fleming 1988), epididymal lipid metabolism has 
probably evolved to resist to the likely seasonal variation 
in dietary fatty acid composition.

In conclusion, our study describes for the first 
time the changes in the fatty acid composition of the 
sperm during epididymal maturation in a bat species. 
Furthermore, we highlight the relation between 
the fatty acid composition of the sperm and sperm 
velocity. This link is often mentioned but has rarely 
been established.
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