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  Correlative species distribution models are frequently used to predict species ’  range shifts under climate change. 
However, climate variables often show high collinearity and most statistical approaches require the selection of 
one among strongly correlated variables. When causal relationships between species presence and climate parameters 
are unknown, variable selection is often arbitrary, or based on predictive performance under current conditions. 
While this should only marginally aff ect current range predictions, future distributions may vary considerably when 
climate parameters do not change in concert. We investigated this source of uncertainty using four highly correlated 
climate variables together with a constant set of landscape variables in order to predict current (2010) and future 
(2050) distributions of four mountain bird species in central Europe. Simulating diff erent parameterization decisions, 
we generated a) four models including each of the climate variables singly, b) a model taking advantage of all variables 
simultaneously and c) an un-weighted average of the predictions of a). We compared model accuracy under current 
conditions, predicted distributions under four scenarios of climate change, and  –  for one species  –  evaluated back-
projections using historical occurrence data. Although current and future variable-correlations remained constant, and 
the models ’  accuracy under contemporary conditions did not diff er, future range predictions varied considerably in 
all climate change scenarios. Averaged models and models containing all climate variables simultaneously produced 
intermediate predictions; the latter, however, performed best in back-projections. Th is pattern, consistent across dif-
ferent modelling methods, indicates a benefi t from including multiple climate predictors in ambiguous situations. 
Variable selection proved to be an important source of uncertainty for future range predictions, diffi  cult to control 
using contemporary information. Small, but diverging changes of climate variables, masked by constant overall cor-
relation patterns, can cause substantial diff erences between future range predictions which need to be accounted for, 
particularly when outcomes are intended for conservation decisions.   

 Species ’  range-shifts due to recent climate change have been 
observed across all continents and taxonomic groups 
(Parmesan and Yohe 2003, Chen et   al. 2011) and are 
expected to accelerate in the future (Houghton et   al. 
2001), which will further exacerbate the risks of species 
and popu lation extinction (Th omas et   al. 2004). Since this 
raises questions concerning currently prevailing conserva-
tion goals and strategies (Ara ú jo et   al. 2004, 2011), the 
prediction of climate-change eff ects on species distribution 
has become a research fi eld of prime scientifi c and political 
relevance (Wiens et   al. 2009). 

 Species distribution models (SDMs) are the most 
common tools for forecasting species range shifts under 
climate change. Th ese models use a variety of statistical 
approaches (Guisan and Zimmermann 2000) to describe 

species occurrence (or abundance, Renwick et   al. 2011) as a 
function of climate and other environmental predictors, 
often in a spatially explicit way. Th e models are usually 
fi tted based on current conditions and extrapolated to 
future scenarios, on the assumption of niche conservatism 
(Pearson and Dawson 2003, Dormann 2007, Wiens et   al. 
2010). SDMs have frequently been criticised for their 
reliance on that assumption, as well as for neglecting eco-
logical processes such as changes in biotic interactions (but 
see: Guisan et   al. 2006, Ara ú jo and Luoto 2007, Heikkinen 
et   al. 2007), dispersal (but see: Schloss et   al. 2012), genetic 
adaptation (Williams and Jackson 2007, Pearman et   al. 
2008) or species behavioural plasticity in the face of climate 
change (Root et   al. 2003). Moreover, from a statistical 
viewpoint, SDMs are considered problematic since they are 
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not only aff ected by the various sources of uncertainty 
inherently associated with correlative modelling (Guisan 
and Zimmermann 2000, Dormann 2007, Dormann et   al. 
2008), but they additionally suff er from problems linked 
with extrapolating to unknown (and un-evaluable) future 
conditions, which may strongly deviate from the conditions 
used for calibration (Elith et   al. 2010). 

 Not surprisingly, the steady increase in predictive 
models is paralleled by a growing number of critical 
appraisals of their caveats, and by attempts to quantify their 
various sources of uncertainty in order to refi ne future 
projections (Pearson and Dawson 2003, Dormann 2007, 
Wiens et   al. 2009). Th e focus has been on evaluating the 
eff ects of using diff erent statistical modelling approaches 
(Th uiller 2004, Lawler et   al. 2006), data quality in terms 
of precision (Dormann et   al. 2008) and extent (Th uiller 
et   al. 2004, Barbet-Massin et   al. 2010), model parameteriza-
tion (Beaumont et   al. 2005, Synes and Osborne 2011), 
threshold-selection methods (Th uiller 2004), diff erent 
greenhouse gas emission scenarios (Th uiller 2004), global 
atmospheric circulation models or downscaling approaches 
(Beaumont et   al. 2007). One aspect, to our knowledge 
rarely assessed, is the uncertainty introduced by the selection 
of climate variables, given the high degree of collinearity 
between them (Madden and Williams 1978). 

 SDMs draw on correlations between species occurrence 
and environmental predictors. However, driven by the 
same underlying atmospheric circulation processes, climate 
variables often are strongly correlated (Madden and 
Williams 1978, Trenberth and Shea 2005, Zhou et   al. 
2009). Hence, when causal mechanisms of species – climate 
relationships are unknown, the  ‘ true ’  predictor from a set 
of collinear variables cannot be identifi ed. As long as the 
models are only used for interpolation, i.e. for predicting 
species occurrence under currently prevailing conditions, 
the selection of a strong correlate instead of the causal 
driver is of little concern, since similar outcomes can be 
expected. Extrapolations, however, can be problematic 
when correlation patterns change over space or time 
(Dormann et   al. 2012). In climate-change forecasts this 
may be the case, when diff erent climate variables change 
non-concomitantly, leading to diverging projective out-
comes. Th is problem can be further amplifi ed when one 
variable out of a  ‘ correlation-cluster ’  needs to be selected, 
since many modelling approaches are not amenable to high 
levels of collinearity between predictors (Dormann et   al. 
2012). In the absence of ecological knowledge about 
the infl uence of the descriptors on the process at stake, 
selection of variables is commonly based on their statistical 
explanatory performance, under currently prevailing condi-
tions. However, with a set of highly correlated, statistically 
indistinguishable predictors, the risk of dropping the 
relevant variable is high, which  –  in the case of diverging 
climate change patterns  –  may even result in predicting 
opposed trends in future range-developments. In ambigu-
ous situations, particularly when the intention is to predict 
rather than infer, the inclusion of several correlated, 
potentially relevant variables in the same model may thus be 
preferable, as it may lead to a  ‘ less wrong ’  result than when 
operating with only one single irrelevant predictor arbi-
trarily selected. Moreover, there are cases in which several 

climate parameters are hypothesized, if not recognized, to 
aff ect species ’  ecology and thus need to be considered. 
Several approaches specifi cally designed for  –  or less sensi-
tive to  –  collinearity problems may conducive to this 
purpose, the most common among which have been 
reviewed by Dormann et   al. (2012). Although not free from 
the above discussed caveats when it comes to extrapolation, 
machine learning techniques may be among the most 
suitable, since they enable correlated variables to be consid-
ered separately and in interaction, in non-linear relation-
ships (Segurado and Ara ú jo 2004, Ara ú jo et   al. 2005). 

 Even so, evaluating the eff ect of climate variable selection 
on species ’  range forecasts under unknown future climatic 
conditions is a challenging task. While variance in range pre-
dictions can readily be assessed, their accuracy will remain 
unknown. Accuracy measurements obtained with present-
time data, e.g. using re-substitution or data partitioning meth-
ods, may not refl ect the models ’  performance under altered 
conditions (Ara ú jo et   al. 2005, Elith et   al. 2010). Preferably, 
a temporally independent evaluation should be carried out, 
which tests the capacity to predict species ranges under 
former climate conditions. Th is however requires historical 
species data of adequate accuracy, from areas undergoing 
suffi  cient climatic variation and change (Ara ú jo et   al. 2005). 

 Characterized, as they are, by high spatial variation in 
both climatic conditions and predicted changes, mountain 
environments are considered to be ideal regions for explor-
ing the response-ranges of SDMs under scenarios of climate 
change (Maggini et   al. 2011). Moreover, mountain species 
adapted to cold climatic conditions and with little tolerance 
to climatic variation (Hulme 2005) are expected to face a 
particularly high risk of range reduction, if not local extinc-
tion (Hughes 2000, Parmesan 2006) and forecasts of this 
process are a focus of conservation management and policy. 

 In this study we investigated eff ects of climate variable 
selection (in terms of model parameterization) on species 
range predictions under diff erent climate change scenarios 
and explored the potential benefi t of using several correlated 
climate variables in combination, using four mountain bird 
species of conservation concern as a case example. Th ereby 
our objective was not to obtain an optimal prediction for 
the modelled species ’  ranges or to explore the full range 
of uncertainty thereof, but to evaluate the variation in out-
comes introduced by diverging parameterization-decisions 
at this stage of the model building process while holding 
all other potential sources of uncertainty constant. Using 
a small set of  ‘ standard climate variables ’  as an example 
and comparing the resulting predictions under current, 
future and  –  for one of the four species  –  past historical 
climatic conditions, we demonstrate the importance of 
thoroughly appraising change and correlation-patterns of 
climate variables before parameterizing and interpreting 
range-forecast models for conservation management.  

 Material and methods  

 Model species 

 We chose four mountain birds, targeted for conservation as 
model species: the capercaillie  Tetrao urogallus , the hazel 
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grouse  Bonasa bonasia , the pygmy owl  Glaucidium 
passerinum  and the three-toed woodpecker  Picoides 
tridactylus . All four species are listed in Annex 1 of the 
European Birds Directive (Directive 2009/147/EC) and 
have been included in regional conservation plans (for the 
study area see: Mollet et   al. 2008, Suchant and Braunisch 
2008, Keller et   al. 2010). Th e species were chosen for 
several reasons. Firstly, their distribution ranges show a 
high variability with respect to climatic conditions and 
predicted patterns of climate change, which may be 
refl ected in highly diverging range-forecasts. Secondly, 
the available species data are precise enough to capture 
small-scale spatial divergence. Th irdly, due to their ability 
to fl y, range shifts are less likely to be constrained by disper-
sal limitations that were therefore disregarded in the 
models. Climatic conditions are considered to aff ect these 
species both directly, particularly in the breeding season 
(Moss et   al. 2001, Summers et   al. 2004, Fayt 2006, 
Lehikoinen et   al. 2011), and indirectly by infl uencing the 
required vegetation conditions (Braunisch and Suchant 
2007, 2008). Nevertheless, causal relationships quantifying 
how particular climate parameters aff ect the species ’  
distribution patterns remain largely unknown.   

 Study area 

 Th e study area encompassed Switzerland and the federal 
state of Baden-W ü rttemberg in Germany, comprising a 
total area of 77 025 km 2  (Fig. 1). It was selected so as to 
cover a broad climatic gradient (Supplementary material 
Appendix 1, Table A1), representative of the four model 
species ’  distributions in central Europe, and included three 
mountain ranges with diff erent altitudinal profi les and 
sympatric species occurrence: the Black Forest in southwest-
ern Germany, a mainly forested lower mountain range 
of about 7200 km ²  in size with an elevation ranging from 
120 to 1493 m a.s.l. (mean: 663); the Swiss Jura extending 
over 4200 km 2  in western Switzerland and covering an alti-
tudinal range between 500 and 1718 m a.s.l. (mean: 817), 
and the Swiss Alps with altitudes from 370 up to 4634 m 
a.s.l. (mean: 1754) covering 17 300 km ² .   

 Species data  

 Current species data 
 Species data were extracted from two databases, one at the 
Swiss Ornithological Inst., Sempach, Switzerland ( �  www.
vogelwarte.ch/id  � ) and the other at the Forest Research 
Inst. of Baden-W ü rttemberg (FVA), Germany ( �  www.
wildtiermonitoring.de  � ). Both databases contain long-term 
observation data from ornithologists, foresters, hunters, 
birdwatchers as well as research personnel at a minimum 
resolution of 1 km 2 . For the analyses we selected all observa-
tions from 2000 to 2010. Since data were not systematically 
sampled, we reduced the potential bias arising from spatially 
variable observation intensities by retaining only one 
record 1 km  � 2 , resulting in 542 locations for capercaillie 
(C), 1473 for hazel grouse (H), 614 for pygmy owl (P) and 
577 for the three-toed woodpecker (T), mainly but not 

  Figure 1.     Th e study area (light gray), encompassing Switzerland and 
Baden-W ü rttemberg (Germany), with the three major mountain 
ranges (gray), the Black Forest, Swiss Jura and the Swiss Alps. 
Th e dotted polygon indicates the test-area for the independent 
evaluation of the species distribution model for capercaillie, using 
back-projection and historical distribution data of 1920.  

exclusively distributed across the three mountain ranges of 
the study area (Supplementary material Appendix 1, Table A2).   

 Historical capercaillie data 
 To evaluate the predictive performance of back-projected 
models, we used historical occurrence data of capercaillie. 
Exact locations of displaying grounds ( ‘ lekking sites ’ , 
n    �    359), mapped during the mating season between 1900 
and 1920 were available from yearly, area-wide surveys of 
baronial hunting grounds that covered a large part of the 
Black Forest (Fig. 1). In order to calculate evaluation indices 
based on a confusion-matrix, we additionally generated twice 
the number of (pseudo-) absence locations (n    �    718), which 
were randomly drawn from the forest areas within the mini-
mum convex polygon encompassing the lekking sites, but 
outside a 1 km buff er around these lek locations (Fig. 1). A 
1 km-buff er was chosen because it has been shown that 
capercaillie activity and reproduction typically concentrates 
within 1 km around the lek (Wegge and Rolstad 1986, 
Wegge and Larsen 1987).    

 Environmental variables 

 Our predictor set included variables of climate, topography 
and land cover (Table 1). Since the aim of our study was to 
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  Table 1. Environmental variables included in the models, with indication of the sources for Switzerland (CH) and Baden-W ü rttemberg 
(BW). Vector25/ATKIS: vector formats of landscape objects from topographic maps at a scale of 1:25 000; GEOSTAT/Landsat 5: raster 
representation of land cover types, resolution of 100    �    100 m and 30    �    30 m, respectively; DEM: digital elevation model; BAFU: Federal 
Offi ce of the Environment; FVA: Forest Research Inst. of Baden-W ü rttemberg; WSL: Swiss Federal Inst. of Forest, Snow and Landscape 
Research.  

Category Variable Description Unit Source CH Source BW

Climate T57 Average temperature May – July  ° C Wordclim/WSL Wordclim/WSL
T122 Average temperature Dec. – Feb.  ° C Wordclim/WSL Wordclim/WSL
P57 Precipitation sum May – July mm Wordclim/WSL Wordclim/WSL
P122 Precipitation sum Dec. – Feb. mm Wordclim/WSL Wordclim/WSL

Topography SLOPE Slope degree DEM DEM
TOPEX Topographic position index index DEM DEM
EAST Eastness (sine of aspect) ( – 1) – 1 DEM DEM
NORTH Northness (cosine of aspect) ( – 1) – 1 DEM DEM
SOLAR57 Pot. solar radiation May – July Wh m  � 2 DEM DEM

Land cover FOREST Forest % Vektor25 1 ATKIS 2 
FOEDGE Outer forest edge density m km  � 2 Vektor25 ATKIS
INTENSIVE Intensive grassland and arable 

land
% GEOSTAT 3 /Vector25 Landsat5 4 /ATKIS

EXTENSIVE Extensive grassland % GEOSTAT/Vector25 Landsat5/ATKIS
WETSOIL Proportion of mires and wet 

soils
% Mire inventory BAFU, Vector25 Mire inventory FVA, ATKIS

ROADDENS Density of roads m km  � 2 Vektor25 ATKIS
SETTLEDIST Distance to settlements m Vektor25 ATKIS

    1  �  www.swisstopo.admin.ch/internet/swisstopo/de/home/products/landscape/vector25.html  �    
  2  �  www.lgl-bw.de/lgl-internet/opencms/de/05_Geoinformation/AAA/ATKIS.de  �    
  3  �  http://brsweb.lubw.baden-wuerttemberg.de  �    
  4  �  www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat.html  �    

  Table 2. Climate scenarios used here rely on regional atmospheric circulation models (RCM) developed by different institutes for down-
scaling general circulation models (GCM). Predicted changes by 2050 (mean and standard deviation) within the study area are provided 
for the climate variables included in the models. (For variable codes see Table 2.)  

Scenario GCM RCM Institute 1  Δ  T57 ( ° C)  Δ  T122 ( ° C)  Δ  P57 (mm)  Δ  P122 (mm)

S1 ECHAM5 CLM MPI 1  �    1.26 (0.36)  �    1.77 (0.11)  �  3.90 (5.11)  �  1.52 (4.89)
S2 HadCM3 HADRN3 HC 2  �    2.89 (0.41)  �    3.20 (0.19)  �  19.06 (5.63)  �    1.00 (2.87)
S3 Arp è ge HIRHAM3 DMI 3  �    1.04 (0.35)  �    2.22 (0.16)  �    2.48 (5.79)  �  8.20 (7.92)
S4 CCSM3 RCA30 SMHI 4  �    2.32 (0.37)  �    2.11 (0.22)  �  21.06 (8.44)  �    1.44 (3.25)

    1 HC: Hadley Center ( �  www.metoffi ce.gov.uk � );  2 MPI: Max Planck Inst. ( �  http://cera-www.dkrz.de  � );  3 DMI: Danmark Metereological 
Inst. ( �  www.dmi.dk/dmi/en/index/klima.htm  � );  4 SMHI: Swedish Meteorological and Hydrological Inst. ( �  www.smhi.se/en  � ).   

single out the eff ects of climate variable selection on range 
forecasts, we varied only the climate data when projecting 
to diff erent time-periods, while holding all other variables 
constant over time.  

 Climate 
 We used a simple set of four highly correlated (Spearman ’ s 
rank correlation coeffi  cient r s     �    0.7) climate variables, 
each of which could reasonably be assumed to aff ect species 
ecology: the average temperature (TAVE) in the breeding 
season (May – July) and in winter (December – February) 
[ ° C], and the sum of precipitation (PRCP) in both periods 
[mm]. Current  ‘ baseline-data ’  (long-term averages from 
1971 to 2000) were derived from the worldclim-dataset 
(Hijmans et   al. 2005) ( �  www.worldclim.org  � ), which 
were downscaled from a resolution of 1 km to 100 m based 
on the SRTM-V4 digital elevation model and the method 
described in (Zimmermann and Roberts 2001). 

 Climate change scenarios for the year 2050 represented 
long-term averages compiled from data relating to 2031 –
 2050. Since changes of climate variables, and consequential 
correlation patterns between climate variables, may strongly 

diff er between climate models, we used four diff erent sce-
narios (S1 – S4, Table 2) based on four regional circulation 
models (RCM) with four underlying general circulation 
models (GCM), stemming from diff erent sources and chosen 
so as to capture the widest range of diverging predictions 
with respect to the used variables (Table 2). All projections 
referred to the moderate IPCC (International Panel for 
Climate Change) emission scenario A1B, with the under-
lying storyline assuming very rapid economic growth, a 
global population that will peak in mid-century and decline 
thereafter, a rapid introduction of new and more effi  cient 
technologies, and a balanced use of fossil and non-fossil 
energy (Nakicenovic et   al. 2000). Data were provided at a 
100 m resolution that was obtained by adding the anomalies 
between current and future climate conditions, which were 
downscaled to 1 km using the change factor methodology 
(Diaz-Nieto and Wilby 2005) to the current baseline data. 

 Historical climate data (long-term averages from 1901 
to 1920) were obtained from the CRU TS 1.2 Europe 
(original resolution: 10 arc-minutes (Mitchell et   al. 2004)), 
downscaled to 30 arc-seconds ( ∼  1 km) using the worldclim 
dataset with the change factor methodology (Diaz-Nieto and 
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but at the same time remains as close as possible to uniform 
(principle of maximum entropy). Environmental variables 
and functions thereof are used as predictors, including 
linear, quadratic and product terms, as well as hinge, or 
threshold, functions (Phillips et   al. 2006). Each predictor 
is weighted by a coeffi  cient, which  –  starting with a uniform 
distribution  –  is iteratively changed until the resulting 
distribution converges to maximise the likelihood of the 
occurrence data. In order to avoid over-fi tting, the average 
value for a given predictor is constrained to be close (i.e. 
within the confi dence intervals), but not similar to the 
empirical average measured over the species locations (for 
detailed information see Phillips et   al. 2004, 2006, Elith 
et   al. 2006, Phillips and Dudik 2008). To best capture 
the complexity of species – habitat interactions we fi tted the 
models with all predictor functions included ( ‘ auto-
features ’ ), with a random background sample of 10 000 
cells (Barbet-Massin et   al. 2012), a maximum of 500 
iterations and a convergence threshold of 10  � 5 . Th e models 
were evaluated using 10-fold cross-validation, measuring 
the accuracy by means of area under the receiver operating 
characteristics curve (AUC, Fielding and Bell 1997). With 
no absence data available, AUC-statistics were calculated 
on the random background cells instead (Wiley et   al. 2003, 
Phillips et   al. 2006), thus assessing the models ’  ability to 
discriminate between  ‘ presence ’  and  ‘ random ’  rather than 
between  ‘ presence ’  and  ‘ absence ’ . In this case the maximum 
achievable AUC is not 1 but 1 �  a /2, where  a  is the true, 
but unknown distribution (Phillips et   al. 2006, Raes and 
ter Steege 2007) and AUC values do not refl ect absolute, 
but the relative model performance. Th e resulting maps, 
showing the predicted probability of species presence for 
each raster cell of the study area, were converted into binary 
 ‘ presence – absence ’  maps, using the threshold at which 
the sum of sensitivity and specifi city calculated on the test 
data was maximised (average over the 10 cross-validation 
replicates).   

 Model comparison 
 For each species we generated fi ve models. Four of them 
(M1 – M4) used the environmental variables (Table 1), 
together with only one of the four climate variables, while 
the fi fth (M5) took advantage of all four climate variables 
simultaneously. In addition, a sixth map (AV) was generated 
by producing the un-weighted average of the predictions 
of M1 – M4 (commitee averaging, see Ara ú jo and New 
2007). We tested for overall diff erences between the models ’  
predictive accuracy under current conditions by applying 
a Kruskal – Wallis test to the cross-validation replicates, using 
a post-hoc Mann – Whitney U-test with Bonferroni-corrected 
p-values to detect pairwise diff erences between models. 

 All models were projected to the climate scenarios of 
2050 and the results converted to binary maps of predicted 
presence and absence. From these, we calculated for each 
species, and each model-type and scenario: a) the total area 
of predicted presence under present and future conditions 
[km 2 ], b) the proportional change in distribution area com-
pared to the predictions of 2010 (%), and c) the changes in 
terms of gained, lost and retained area within the selected 
time horizon. We compared the variation due to climate 
variable selection within the same scenario ( ‘ within scenario 

Wilby 2005). All climate data were processed and provided 
by the Research Unit Landscape Dynamics of the Swiss 
Federal Research Inst. WSL.   

 Topography 
 Five topographical variables (slope, topographic position, 
eastness, northness and potential solar radiation) were 
derived from the digital elevation model (DEM) of both 
countries (Table 1). Th e topographic position index, 
calculated with the extension TPI 1.3a for ArcView 3.3 
(Jenness 2006), qualifi es a point ’ s position relative to the sur-
rounding terrain, with positive values indicating exposed 
sites such as hilltops or ridges, and negative values represent-
ing depressions. Th e potential solar radiation [Wh m  � 2 ] 
in the breeding season (May – July) was calculated according 
to (Fu and Rich 2002) using the function  ‘ area solar 
radiation ’  in ArcGIS 9.3 (ESRI 2008).   

 Land cover 
 Land cover variables encompassed forest cover, outer forest 
edges, intensively and extensively used agricultural land, 
wetland (mires and other habitat types on wet soils), as well 
as roads and settlements. Since diff erent data sources were 
available for the diff erent variables in the two countries 
(Table 1), defi nition of the land use categories was partly 
constrained by the need to extract similar information from 
diff erent sources; for this reason intensively used grasslands 
and arable fi elds were subsumed to  ‘ intensive farmland ’ , 
because these categories are not distinguished in the 
Swiss dataset. With one exception (ROADDENS and 
SETTLEDIST, Table 1), bivariate correlations for topogra-
phy and land-cover variables did not exceed r s     �    0.7 
(Supplementary material Appendix 1, Table A3). 

 All variables were prepared as ASCII raster maps with a 
resolution of 50    �    50 m in the Gauss – Krueger Coordinate 
system (DHDN 3, Gauss – Krueger Zone 3). To adjust 
variable resolution to that of the species data, the environ-
mental variables were analysed and summarized within 
a moving window of 1 km 2 , calculating the mean in the 
case of continuous variables (e.g. climate and topography 
variables, distance to settlements), the proportion in the 
case of binary land cover variables (e.g. forest, wetland) and 
the density of linear elements (e.g. roads, forest edges) 
(Table 1). Th e window size also approximates the home-
range size of three of the study species (capercaillie, pygmy 
owl and three-toed woodpecker) and double the home-
range size of the fourth (hazel grouse).    

 Statistical analysis  

 Modelling approach 
 As a method both robust regarding collinearity problems 
and able to deal with missing absence data (Phillips et   al. 
2006), we chose a Maximum entropy modelling approach 
implemented in the software Maxent (Phillips et   al. 2004, 
2006). Maxent is a machine-learning technique that con-
trasts the conditions at the species ’  locations with those 
prevailing throughout the study area. Th ereby an iterative 
algorithm is used to approach the probability distribution 
of species presence over all cells of the study area that fi ts 
best the environmental conditions at the presence locations, 
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set. With BRT, another machine learning technique was 
employed. Th is method uses a recursive partitioning algo-
rithm to fi t a large number of classifi cation and regression 
trees, each splitting the response data into groups that are 
most homogeneous with regard to the predictors, fi nally 
combining the trees to provide robust predictions (Friedman 
2001). BRT-models were calibrated with a maximum of 
2000 trees and a cross-validation procedure to sequentially 
remove the least important predictors to defi ne the most 
parsimonious fi nal model (Elith et   al. 2008). Th e models 
were evaluated and compared as described above.     

 Results  

 Climate variables and their changes 

 Strong collinearity (r s     �    0.7) between temperature and pre-
cipitation variables was recorded across the study area, 
and overall correlation patterns did not, or only marginally, 
diff er between current and future conditions and between 
diff erent scenarios (Table 3, Supplementary material 
Appendix 1, Table A4). However, the predicted changes of 
the climate variables (both within and between scenarios) 
were not correlated in a similar way (Table 3), indicating 
non-linear changes with regionally diverging developments 

variation ’ ) to the variation of the same model in diff erent 
scenarios ( ‘ between scenario variation ’ ) by calculating the 
maximum diff erence (i.e. the diff erence between the largest 
and smallest predicted distribution area,  Δ  )  and the variance 
(i.e. the standard deviation,  σ ) between predictions obtained 
with models using diff erent climate variables (M1 to M4) in 
the same scenario S i  ( Δ M (Si) ,  σ M (Si) ) and those between 
models using the same variable M i  in diff erent scenarios 
(S1 – S4) ( �   Δ S (Mi) ,  σ S (Mi) ). Th e relation between the two 
sources of variation were then quantifi ed for each species by 
calculating the ratio between  Δ M (Si)  and  Δ S (Mi)  ( σ M (Si) / 
 σ S (Mi) , respectively) for the 4  �  4 possible combinations. 
As models based on diff erent climate variables may already 
predict diff erent distribution areas under current climate 
conditions  –  which then may add to the diff erences between 
future distribution ranges, i.e. bias the results  –  we used 
the proportional deviance from the predicted current distri-
bution (b), which corresponds to the species range change 
index (Buisson et   al. 2010), to determine the range of 
between-model variation.   

 Back-projections 
 To compare the predictive performance of diff erently 
parameterized models, the models for capercaillie were back-
projected to past climate conditions of 1920 and evaluated 
using historical occurrence data. We calculated diff erent 
measures of accuracy, the AUC, the maximum Kappa ( κ  max ) 
and the percentage of correctly classifi ed evaluation points 
(PCC) at  κ  max  (Cohen 1960, Fielding and Bell 1997). Since 
the same test-data were used, the AUC values of the diff erent 
models were compared using the method for correlated 
ROC-curves (DeLong et   al. 1988), with Bonferroni-
corrected p-values to account for multiple testing. Pairwise 
diff erences between Kappa-values were assessed by fi rst 
estimating the supposed  ‘ common Kappa ’ , as described by 
Fleiss (1981), which was then used to test for equal Kappa 
values on the Chi-square distribution. Accuracy measures 
were calculated and compared in R (R Development 
Core Team) using the packages PresenceAbsence (Freeman 
and Moisen 2008) and pROC (Robin et   al. 2011) as well as 
the ArcView 3.3 extension KAPPA_STATS (Jenness and 
Wynne 2006).   

 Consistency across SDM-approaches 
 Since the selection of the modelling technique can con-
siderably aff ect model outcomes (Th uiller 2004, Lawler 
et   al. 2006), we compared the predictions for current, future 
and historical distribution of capercaillie obtained with 
Maxent with the outcomes of three other SDM-approaches 
that deal diff erently with collinearity (Dormann et   al. 
2012): generalized linear models (GLM), generalized addi-
tive models (GAM) and boosted regression trees (BRT) were 
calibrated using the same set of presence and pseudo-
(absence) points. GLMs included linear, quadratic and 
3rd order polynomials of the predictors, which were retained 
in the fi nal model based on a stepwise selection function 
based on Akaikes information criterion (AIC, Burnham 
and Anderson 2002) (AICstep, R-library MASS). GAMs 
were fi tted using a cubic spline smoother with 3 degrees of 
freedom (Hastie and Tibshirani 1990), also employing 
stepwise variable selection for defi ning the fi nal predictor 

  Table 3. Correlations (Spearman ’ s rank correlation) between climate 
variables (current conditions and change scenarios, upper right), 
and between their changes since 1920 or predicted for 2050, 
respectively (lower left), measured at 10 000 points randomly 
selected across the study area. For variable and scenario codes see 
Table 2.  

T57 T122 P57 P122

Current (2010)
T57  – 0.97  � 0.80  � 0.81
T122  –  –  � 0.75  � 0.73
P57  –  –  – 0.78
P122  –  –  –  – 

Historical (1920)
T57  – 0.96  � 0.84  � 0.87
T122 0.92  –  � 0.81  � 0.79
P57  � 0.16  � 0.28  – 0.78
P122  � 0.08  � 0.22 0.44  – 

S1 (E/CLM)
T57  – 0.98  � 0.79  � 0.78
T122  � 0.16  –  � 0.76  � 0.73
P57  � 0.50  � 0.15  – 0.78
P122  � 0.55 0.14 0.05  – 

S2 (H/HAD)
T57  – 0.97  � 0.77  � 0.78
T122 0.32  –  � 0.75  � 0.74
P57  � 0.63  � 0.23  – 0.73
P122  � 0.38  � 0.13 0.38  – 

S3 (A/HIR)
T57  – 0.97  � 0.72  � 0.78
T122 0.25  –  � 0.66  � 0.70
P57 0.19 0.42  – 0.76
P122  � 0.38  � 0.57  � 0.42  – 

S4 (C/RCA)
T57  – 0.97  � 0.80  � 0.78
T122 0.87  –  � 0.75  � 0.70
P57  � 0.59  � 0.73  – 0.77
P122  � 0.46  � 0.36 0.11  – 
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(Supplementary material Appendix 1, Fig. A1). Diff erences 
were recorded for both the strength of the correlations, as 
well as for their directions, with even opposite changes 
predicted for the same climate variable in diff erent seasons 
(e.g. summer temperature was predicted to rise locally in 
places where winter temperature was predicted to decrease).   

 Range predictions 

 All species showed a similar distribution pattern, and climate 
variables always ranked among the most important predic-
tors (Supplementary material Appendix 1, Table A5). 
Temperature during the breeding season explained most, 
winter precipitation the least of the variance in all species, 
except for the pygmy owl for which precipitation in the 
breeding season was the least important climate parameter. 
In the following the results are described for the Maxent-
models, unless stated otherwise. 

 All models performed well in predicting current species 
distributions (Table 4). Accuracy was highest for the mod-
els of capercaillie (mean AUC: 0.937 – 0.945) and lowest 
for those of hazel grouse (mean AUC: 0.868 – 0.882). No 
signifi cant diff erences in accuracy were found between 
models including the diff erent climate variables singly 
or simultaneously, although the latter models tended to 
perform best in all species, which was signifi cant in 
some GLMs, GAMs and BRTs (Supplementary material 
Appendix 1, Table A6). 

 Whereas predicted current distribution areas diff ered 
only marginally between the models, with regard to 
both area size and location, great diff erences were recorded 
for future forecasts (Fig. 2, 4; Supplementary material 
Appendix 1, Fig. A2). Th is fi nding was consistent over 
modelling approaches (Fig. 3) and applied to all climate sce-
narios (Fig. 2), being most pronounced under scenario S2. 
Th e variance in future distributions predicted by models 
using alternative climate variables from the same scenario 
( σ M (Si) ) was 3.40 (pygmy owl) to 4.53 (capercaillie) times 
greater than when using diff erent climate change scenarios 
with the same model ( σ S (Mi) ) (3.68 for hazel grouse and 
3.55 for three-toed woodpecker); a similar pattern was found 
for the maximum diff erences between area-predictions 
( Δ M (Si) ), which were 2.71 (hazel grouse) up to 4.03 times 
(capercaillie) greater, (3.41 for pygmy owl and 3.58 for 
three-toed woodpecker). In addition, in the case of caper-
caillie, the uncertainty in range-forecasts attributable to 
variable selection was substantially larger than the uncer-
tainty introduced by selecting diff erent modelling methods, 

with a 14.82 times greater variance and a 15.69 greater 
maximum diff erence between range-changes. 

 Most models predicted a reduction of the study species ’  
distribution ranges, which was particularly pronounced 
when including only winter temperature (M3, Fig. 2). 
On the other hand, range-expansions were also predicted, 
mainly by models focusing only on precipitation. Th e area 
expected to be lost by 2050 was mainly situated at lower 
altitudes in the lower mountain ranges, Black Forest and 
Jura, and was generally greater than the area predicted to be 
gained in higher altitudes in the Alps (Fig. 3, Supplementary 
material Appendix 1, Table A7, Fig. A2). Th e averaged 
models naturally predicted intermediate situations, while 
the areas obtained with the models including all variables 
(M5) were always smaller than the average.   

 Back-projections 

 Projected back to 1920, the models predicted the historical 
distribution of capercaillie lekking sites with moderate 
accuracy (0.7    �    AUC    �    0.8) (Table 5), (Hosmer and 
Lemeshow 2000), and showed a fair agreement (0.2  �    
κ  max     �    0.4) in terms of Kappa values (Landis and Koch 
1977) (Supplementary material Appendix 1, Table A8). 
As regards the AUC, the models taking into account all 
variables outperformed the single-variable models, whereas 
the averaged predictions of these models did not perform 
better than the best of the single-variable models. Th is fi nd-
ing was signifi cant for Maxent, GLM, GAM, but remained 
only a trend for BRT ’ s after applying Bonferroni-correction. 
A similar pattern was evident for the other evaluation 
measures (Supplementary material Appendix 1, Table A8).    

 Discussion 

 Previous studies have comprehensively discussed and 
quantifi ed the various sources of uncertainty in SDM-
based climate change impact assessments (Ara ú jo et   al. 
2005, Dormann 2007, Elith et   al. 2010). Next to method-
inherent aspects (e.g. disregarding biotic interactions, dis-
persal limitations, and the adaptive potential of the species 
considered), decisions taken during the model-building 
process, such as the choice of the statistical approach, the 
climate change scenarios, or the data used for calibration are 
among the most frequently mentioned issues. Our study, 
in line with Synes and Osborne (2011), adds another 
important aspect, showing that models of similar fi t, but 

  Table 4. Model accuracy (AUC and standard deviation of Maxent-models) based on 10-fold cross-validation. No signifi cant differences 
exist between the models (Kruskal – Wallis test with post-hoc Mann – Whitney U-tests for pairwise differences, Bonferroni corrected 
p-values    �    0.05 in all cases).  

Climate 
variable

Capercaillie Hazel grouse Pygmy owl Threetoed wp

Model AUC (SD) AUC (SD) AUC (SD) AUC (SD)

M1 P122 0.939 (0.013) 0.868 (0.015) 0.902 (0.012) 0.903 (0.013)
M2 P57 0.937 (0.013) 0.871 (0.012) 0.895 (0.015) 0.909 (0.013)
M3 T122 0.942 (0.010) 0.876 (0.013) 0.905 (0.011) 0.915 (0.010)
M4 T57 0.942 (0.010) 0.876 (0.013) 0.907 (0.011) 0.916 (0.010)
M5 All 0.945 (0.009) 0.882 (0.011) 0.909 (0.010) 0.919 (0.009)
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  Figure 3.     Distribution area of capercaillie predicted by models based on diff erent climate variables used singly (M1 – M4) and in 
combination (M5) under current (2010) and future (2050) climate conditions, comparing 4 diff erent modelling approaches: generalized 
linear models (GLM); generalized additive models (GAM); boosted regression trees (BRT); and maximum entropy models (Maxent). 
Th e bars on the right ( Δ M) indicate the diff erences between the modelling approaches for each model (from left to right: M1: light grey, 
M2: grey, M3: dark grey, M4: black, M5: medium grey). Th e models (M1 – M5) are specifi ed in Table 3.  

  Figure 2.     Distribution area of (a) capercaillie, (b) hazel grouse, (c) pygmy owl and (d) three-toed woodpecker, predicted by models 
based on diff erent correlated climate variables (M1 – M4) under current (2010) and future (2050) climate conditions, as predicted by 
four scenarios of climate change (S1 – S4). Th e lines show the averaged predictions of M1 – M4 (black) and a model (M5) including all 
four climate variables together (grey). Th e bars on the right indicate the diff erences between the scenarios for each model (M1: light grey, 
M2: grey, M3: dark grey, M4: black). Th e climate change scenarios (S1 – S4) are described in Table 2; the models (M1 – M5) are defi ned 
in Table 3.  

parameterized with diff erent but correlated climate vari-
ables, may not only predict divergent, unidirectional range 
changes, but even contradictory range developments, both 
within and between climate change scenarios. While being 
aware of the further sources of uncertainty, including 
possible interactions thereof, we intentionally avoid any 
comparison or ranking, because we expect the results to be 
largely dependent on the particular cha racteristics of the spe-
cies data and study area. In the following, we focus only on 
the problem of model parameterization with correlated 

climate variables and the consequences for species range 
predictions.  

 Correlation patterns and variation in predictions 

 Climate parameters generally show a high collinearity in 
space and time, which can cause several problems in species 
distribution modelling. Eff ects on the predictive accuracy 
of SDM ’ s under changing collinearity structures were 
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variation (i.e. between the extremes predicted by the 
single variable models, Fig. 2, 3) and the projected distri-
bution areas coincided spatially with areas characterized 
by a high-consensus between M1 – M4 (Supplementary 
material Appendix 1, Fig. A2).   

 Including multiple correlated climate variables 

 Th e pros and cons of model complexity has given rise 
to controversial discussion as regards projective models under 
changing environmental conditions (Ara ú jo et   al. 2005, 
Elith et   al. 2010). Our results point towards an advantage 
of complexity, showing that higher parameterized models, 
including multiple climate predictors, not only deliver a 
better fi t (see also Synes and Osborne 2011) but also a 
better predictive performance in back-projections. Th is fi nd-
ing was consistent across four SDM approaches that 
cope diff erently with collinearity, suggesting that the benefi t 
from including multiple climate variables in ambiguous 
situations may even outweigh possible collinearity issues. 
However, the fact that the predicted future distribution 
ranges obtained with  ‘ multiple climate models ’  were always 
smaller in size than in the averaged predictions may also 

recently demonstrated by Dormann et   al. (2012), who rec-
ommended an a priori assessment of collinearity in both 
the training and the prediction dataset, preferably by means 
of pairwise diagnostic tools such as correlation matrices. 
Our study shows that this diagnosis may not suffi  ce: 
while overall correlation patterns between current and 
future climate variables were similar (Table 3), great diff er-
ences were found as regards their changes. As these changes 
are minor in magnitude compared to the total variable 
range, they are typically masked by the overall correlation 
patterns. Yet, they remain crucial because it is ultimately 
through them that climate-related divergences between 
current and future predictions occurred, since all other fac-
tors were kept constant. In the study area, changes in 
temperature and precipitation showed great regional and 
seasonal divergence within and between climate scenarios 
(Supplementary material Appendix 1, Fig. A1), and their 
correlations diff ered not only in magnitude but also in 
direction. As a result, variable selection generated a high 
variation in modelling outcomes and even led to contradic-
tory future predictions between  ‘ single-variable ’  models 
(M1 – M4) (Fig. 2, 3, Supplementary material Appendix 1, 
A2). Th e predictions of models that included all potentially 
relevant variables (M5) were mostly within this range of 

  Figure 4.     Predicted distribution of capercaillie under current (2010, left) and future (2050, right) climate conditions (scenario S1: 
ECHAM5/CLM) as predicted by the models M1 – M4 (Table 3) including diff erent climate variables (SDM-approach: Maxent). Diff erent 
colours indicate the consensus between the models, defi ned as the number of models predicting presence in a pixel.  

  Table 5. Accuracy of differently parameterized models for capercaillie, projected to 1920 and evaluated with historical occurrence 
data. Differences between the AUC values were tested using the test for correlated ROC-curves (DeLong et   al. 1988). Small letters indicate 
similarities between models, i.e. AUC values not labelled with the same letter differ signifi cantly (Bonferroni-corrected p-values    �    0.05). 
Different SDM-approaches were applied: Maxent: maximum entropy models, GLM: generalized linear models, GAM: generalized additive 
models, BRT: boosted regression trees.  

Method
Model

Maxent GLM GAM BRT

Variable AUC (SD) AUC (SD) AUC (SD) AUC (SD)

M1 P122 0.716 a,b (0.016) 0.678 (0.016) 0.690 (0.016) 0.702 a (0.016)
M2 P57 0.713 a (0.016) 0.700 (0.016) 0.705 (0.016) 0.700 a (0.016)
M3 T122 0.729 b (0.015) 0.721 a (0.016) 0.723 a (0.016) 0.715 a (0.016)
M4 T57 0.727 b (0.016) 0.726 a (0.016) 0.728 a (0.016) 0.718 a (0.016)
Av (M1 – 4) 0.723 b (0.016) 0.711 (0.016) 0.714 (0.016) 0.711 a (0.016)
M5 All 0.745 (0.015) 0.731 (0.016) 0.739 (0.016) 0.722 a (0.016)
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result in totally novel, so far unobserved combinations of 
environmental conditions. Land-use changes occurring in 
parallel to climate change can further confound the evalua-
tion results. Moreover, when historical species data from 
the calibration area are used, temporal autocorrelation 
eff ects, for example due to habitat tradition in long-lived 
species, cannot be excluded, particularly when the lag 
between time slices is short. Our models for capercaillie 
were projected 90 yr into the past, with the area used for 
evaluation representing only a limited part of the calibra-
tion area, actually the edge of the distribution range for 
which the greatest changes were to be expected (Braunisch 
et   al. 2008). In fact, the capercaillie population in this 
region has dropped dramatically during the past century 
(Roth 1974), accompanied by a substantial range contrac-
tion (Braunisch and Suchant 2006), but this change can 
only partly be attributed to climate change eff ects. Land 
use changes, particularly changes in forest structure, which 
were not accounted for in this model, are considered to be 
the main drivers (Suchant and Braunisch 2004). However, 
we assume that these confounding eff ects may have 
similarly aff ected the evaluation results in all models. 
Hence they are likely to infl uence model ranking persis-
tently in the same manner, which means that the signifi -
cantly  ‘ least wrong ’  model will still be the best under any 
given circumstances.   

 Conclusions and applications 

 Considering the various sources and high levels of inaccu-
racy in SDM-forecasts under climate change, the usefulness 
of these models for species conservation planning has 
frequently been questioned (Pearson and Dawson 2003, 
Ara ú jo et   al. 2005, Dormann 2007, Wiens et   al. 2009). 
Indisputably, SDMs have their value in exploring a range of 
possible developments and identifying general common 
trends among a variety of predictions constructed with 
diff erent underlying sources of uncertainty. However, the 
present study also points to a serious potential danger of 
misinterpretation if not misuse. Climate change impacts 
on endangered species, either observed or predicted, have 
led not only to calls for adapting and extending existing 
conservation strategies or areas (Ara ú jo et   al. 2011), but also 
to questioning the investment of limited resources on 
endangered populations that are  ‘ anyway doomed to extinc-
tion ’ . Although the uncertainty of forecasts is undisputed 
in the scientifi c community, and multi-model approaches 
such as ensemble-forecasting, consensus maps and other 
methods quantifying inter-model variance (Ara ú jo and New 
2007, Wiens et   al. 2009) are common standard, politics and 
management request clear, one-dimensional messages. It 
emerges from our series of simple case studies, which focus 
on only one aspect of uncertainty, that there could be a 
model available to support almost any desired statement or 
political decision  –  and each scenario could be equally justi-
fi ed if one merely relies on the outcome of cross-validation. 

 We thus unite with other authors (Ara ú jo et   al. 2005, 
Ara ú jo and New 2007, Dormann 2007, Wiens et   al. 
2009, Elith et   al. 2010) to re-emphasize the need 1) to better 
communicate causes and consequences of uncertainty to the 

indicate a possible problem of over-fi tting (Beaumont 
et   al. 2005). 

 Th e inclusion of multiple collinear predictors requires a 
statistical approach that can deal with collinearity. Several 
methodological approaches have been developed for this 
purpose (Dormann et   al. 2012). Th ey either involve the 
use of so-called  ‘ latent variables ’ , constructed from a 
cluster of correlated ones (e.g. using the orthogonal com-
ponents of a principal component analysis (PCA) instead 
of the raw variables), or they belong to a group of methods 
that use model selection techniques in order to balance 
model complexity and fi t, on the expectation that they 
will be less sensitive to the caveats inherent in collinearity 
(Dormann et   al. 2012). Th e former methods are problem-
atic in the context of climate-change because the latent 
variables, extracted from currently prevailing correlation 
patterns, cannot be used with diverging future patterns. In 
contrast, the latter methods, such as machine learning 
techniques, may be advantageous as they consider climate 
variables separately (Phillips et   al. 2006). Furthermore, 
they allow for non-linear relationships and interactions 
between variables and may thus capture species response 
patterns more realistically (Ara ú jo et   al. 2005, Phillips and 
Dudik 2008). Nevertheless, whenever several correlated 
predictors share a substantial amount of information, their 
relative importance remains diffi  cult to assess (Meloun 
et   al. 2002). In our case, ranking of the variables in the 
multi-climate models was constant over all cross validation 
replicates of the same model (results not shown), and 
corresponded to both the relative impact of the variable 
in the single-variable models (Supplementary material 
Appendix 1, Table A4) and to the ranking of univariate 
models regarding their predictive accuracy (results not 
shown). Th is suggests that Maxent, through its iterative 
model fi tting approach (Phillips et   al. 2006), provides a 
stable ranking of variables, and may even approximate their 
relative importance  –  but this requires further investigation.   

 Model evaluation and back-projection 

 In line with previous studies showing that measures of 
accuracy based on contemporary, non-independent evalua-
tion data are unreliable (because generally over-optimistic) 
in assessing predictive performance under altered climate 
conditions (Ara ú jo et   al. 2005, Elith et   al. 2010), our 
results show that with models of similar accuracy, not only 
diverging but even contrasting range developments (i.e. 
range contractions as well as expansions) may be predicted 
(Fig. 2, Supplementary material Appendix 1, Table A7). 
Th is further demonstrates the inadequacy of re-substitution 
or cross-validation methods in justifying the preference 
of one range-forecast over another. Testing back-projections 
with historical species distribution data are believed to 
represent the best available option in terms of evaluating 
species range-forecasts in space and time. Even so, there is 
no guarantee that the accuracy of a model in predicting 
past range shifts automatically translates into reliable fore-
casts (Ara ú jo et   al. 2005). Future climatic changes may 
diff er in terms of magnitude, celerity and direction com-
pared to what has been recorded historically. Th is may 
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public and policy sectors; 2) to develop new quantitative 
and spatially explicit methods for determining causes and 
levels of uncertainty in climate-change SDMs; 3) to balance 
the risks and costs of using model outcomes for decision 
making; 4) to prefer mechanistic, causality-based approaches 
in order to determine species responses to climate change, 
wherever possible. In addition to these general suggestions, 
the present study enables us to formulate the following 
remarks and recommendations that are more specifi c to 
climate variable selection. 

 Firstly, comparing current and future variable correla-
tions is an essential task to be operated before projecting, 
but with the caveat that mere bivariate correlation measures 
between variables may fail to provide suffi  cient information 
about potential deviations. In order to capture essential 
divergences between variables, correlations between the 
predicted changes of variables must be analysed as well. 
Secondly, when causal mechanisms of species-climate 
interactions are unknown, the variability of predictions 
obtained with diff erent model parameterizations should be 
explored instead of relying on one single parameterization. 
If time constraints do not allow a thorough assessment of 
the variation in outcomes introduced by this source of 
uncertainty, we recommend using methods that enable 
all potentially relevant climate variables to be included. 
Finally, accuracy measures based on non-independent, 
present-time evaluation data are unreliable indicators for 
estimating the accuracy of predictions under future condi-
tions. Preferably, independent evaluation (e.g. using data of 
historical distributions or long-term population trends) 
should be employed, which emphasizes the need for long-
term species monitoring programmes. 

 Using correlative SDMs for range predictions requires a 
careful selection of climate variables, ideally based on 
sound ecological causality, such as well documented, strict 
physiological tolerance thresholds to climatic conditions 
(Arlettaz et   al. 2000). Since this information is rarely 
available, and might be diffi  cult to quantify at a distribution-
relevant scale, a sceptical attitude will be the best guide 
when balancing the risks and benefi ts of using SDM fore-
casts for conservation management. 
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