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Deployment of wind energy is proposed as a mechanism to
reduce greenhouse gas emissions. Yet, wind energy and large
birds, notably soaring raptors, both depend on suitable wind
conditions. Conflicts in airspace use may thus arise due to the
risks of collisions of birds with the blades of wind turbines.
Using locations of GPS-tagged bearded vultures, a rare
scavenging raptor reintroduced into the Alps, we built a
spatially explicit model to predict potential areas of conflict with
future wind turbine deployments in the Swiss Alps. We
modelled the probability of bearded vultures flying within or
below the rotor-swept zone of wind turbines as a function of
wind and environmental conditions, including food supply.
Seventy-four per cent of the GPS positions were collected below
200 m above ground level, i.e. where collisions could occur if
wind turbines were present. Flight activity at potential risk of
collision is concentrated on south-exposed mountainsides,
especially in areas where ibex carcasses have a high occurrence
probability, with critical areas covering vast expanses throughout
the Swiss Alps. Our model provides a spatially explicit decision
tool that will guide authorities and energy companies for
planning the deployment of wind farms in a proactive manner
to reduce risk to emblematic Alpine wildlife.
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1. Introduction
The evident negative impacts of global warming on our economy and the biosphere have led many
countries to tackle the energy crisis and define objectives for reducing their fossil fuel consumption.
Recently, the European Union has launched the ‘European Green Deal’ [1], a new broad strategy that
aims to drastically reduce greenhouse gas emissions and decouple the economic growth from carbon
emissions. The goal of this EU initiative is to become ‘climatically neutral’ by 2050 and this will
involve, among others, the extensive use of renewable sources of energy. Yet, along with the claim to
progressively rely exclusively on clean energy, another main target of this new deal is to preserve
biodiversity. Wind energy, together with solar energy, is likely to lead the green energy revolution
worldwide [2]. However, its negative effects on biodiversity have been the subject of an intense debate
[3–7], known as the ‘green–green dilemma’ [8–11]. Indeed, even though wind energy can help to
reduce greenhouse gas emissions, it may represent a new threat to sensitive wildlife whose protection
may in turn hamper the development of this energy sector.

Some of the species most affected by the large-scale expansion of the wind industry are already of
conservation concern, particularly flying vertebrates such as birds [6,12] and bats [13,14]. Large
soaring diurnal raptors are often the main avian victims of the blades of wind turbines [15–19]. This
is particularly concerning as they have a late sexual maturity and a low reproductive rate. Hence,
even a slight increase in their mortality rates can exert strong negative impacts on their population
dynamics [20–23]. Wind energy facilities are often erected in regions where landforms and climate
generate favourable conditions to support the soaring flight of vultures [24,25], either via thermal or
orographic updraughts. The limited frontward visual field of diurnal raptors [26], which reduces their
ability to perceive obstacles appearing in their direction of movement, especially when foraging,
further exacerbates collision risks. Moreover, when rising in a wind updraught, a raptor follows an
ascending spiral (in case of thermals) or a figure-of-eight-shaped path (in case of orographic
updraughts) [27], which may suddenly expose it to a rotating blade that was still invisible a few
seconds ago due to the frequent change of flight azimuth [28].

Reconciling the transition towards a genuinely greener energy production thus necessitates rigorous
and strategic planning that satisfies the dual objective of executing this transition without jeopardizing
wildlife survival. To prevent detrimental impacts of the turbine operation on endangered species,
wildlife managers and wind energy companies need adequate planning tools to minimize the
deployment of wind facilities in areas where major conflicts with biodiversity preservation will occur.
Different approaches have been used as planning tools to mitigate the risks encountered by flying
vertebrates, spanning from mere delineations of buffer areas around sensitive locations [29–31],
through the compilation of distribution areas of sensitive species [28,29,32], to more complex methods
that account for fine-grained habitat use and/or flight behaviour of potentially impacted bat and bird
species [13,33–37]. The first approach is fairly imprecise. For example, buffer areas are often created
around nesting locations while neglecting habitat selection at other life stages. It is furthermore static,
being incapable of accounting for range expansion caused by increases in population sizes of
potentially affected species [38]. The second method equates species presence with areas of potential
conflict. This approach remains coarse as it does not account for actual fine-grained species–habitat
associations, yet it can be valuable for identifying broad areas of potential conflicts. The third method
is the most sophisticated and also the most informative. Spatially explicit predictive models allow
extrapolation to areas for which data about species presence may be deficient. Moreover, when relying
on individual-based data such as GPS-tracking, it enables delineating areas of potential conflict with
an unprecedented precision, most notably when providing information about the altitude above
ground at which birds fly. This approach opens the door towards three-dimensional spatial
modelling aimed to mitigate if not avoid conflicts between flying vertebrates and future wind
facilities development.

The aim of this study was to predict areas of the Swiss Alps where bearded vultures (Gypaetus
barbatus) are likely to fly within or below the critical rotor-swept zone of modern horizontal axis wind
turbines. The bearded vulture is a long-lived scavenger listed as vulnerable in Europe [39] and
critically endangered in Switzerland [40]. Extirpated from many European countries in the early
twentieth century [41], the species has been reintroduced into the Alps since the 1980s, with a steadily
growing population that progressively recolonizes its former historical range [42]. Several cases of
collisions (including fatalities) with anthropogenic structures have been reported in this re-established
population [43,44]. Such collisions include wind turbines, which may represent a growing source of
hazard into the future [45]. This is concerning, because even a slight increase in mortality may push
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the Alpine population of bearded vultures below demographic self-sustainability [23]. Previously, we
developed a spatial model to predict the potential distribution of the species, including its future
expansion across the Swiss Alps [45]. We now expand that model to include a vertical dimension,
specifically flight altitude with respect to the rotor-sweep zone. This refines our previous modelling
projections by incorporating the actual use of airspace.

Using a large dataset of GPS locations collected from tagged individuals, we (i) modelled
the probability that bearded vultures fly within and below the critical rotor-swept zone of wind
turbines and (ii) identified the environmental and topographic variables that drive flight altitude
selection. The model was projected to the entire Swiss Alpine range and combined with the
previously modelled potential distribution of the species [45] in order to show the joint probability of
bearded vultures flying at risky altitudes within suitable habitat. The resulting map provides useful
spatial information to delineate areas where the species would be at risk of colliding with wind
turbine blades and therefore represents a useful decision tool for planning the deployment of wind
power plants across the Swiss Alpine range while minimizing their potential impacts on emblematic
biodiversity.
c.Open
Sci.9:211041
2. Methods
2.1. Study area and environmental variables
We modelled the flight altitude of bearded vultures using environmental variables that represent land
cover characteristics, geology, topography, food availability and wind conditions (table 1). As a result
of a large-scale reintroduction programme, the species is distributed throughout the Alps and
regularly breeds in the French, Swiss, Italian and Austrian sectors. We restricted our analysis to the
Swiss Alpine range, defined as four of the six biogeographic regions of Switzerland [49]: Northern
Alps, Inner Western Alps, Inner Eastern Alps and Southern Alps, since Switzerland hosts most of the
breeding territories compared with the other countries [50] and is representative of the different
habitat types available in the Alps. We focused on Switzerland as the environmental information
required to model the flight altitude differed between all four countries in terms of availability, quality
and resolution, and trying to homogenize the different datasets would have introduced biases.

Land cover information was extracted from the digital cartographic model of Switzerland (Vector25,
https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html). This vector layer was
converted into a raster map with 25 m spatial resolution and reclassified to represent the following
10 classes: orchards, forest, bush, scree, anthropic areas, marshland, water, rock, glacier and remaining
areas not included in the other classes (electronic supplementary material, table S1). The geological
features were derived from the simplified geotechnical map of Switzerland, which was provided as a
digitized vector map by the University of Bern (https://biblio.unibe.ch/maps/bis/publications/dl-
oef21.html). Specifically, it represents the types of the topmost rock strata (https://data.geo.admin.ch/
ch.swisstopo.geologie-geotechnik-gk200/ [46]). The shapefile was converted into a raster map with
25 m spatial resolution and reclassified into four classes: areas dominated by limestone, granite, gneiss
and remaining geological substrates (electronic supplementary material, table S2). Topography was
characterized with five raster layers extracted from a digital elevation model with a spatial resolution
of 25 m (DHM25, https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html). The aspect of
the study area was represented by the deviation from east and north (sine and cosine of aspect,
respectively). Terrain characteristics were incorporated by using the topographic position index (TPI,
Wilson [47]) and the slope unevenness, which describe the elevation or slope of a cell relative to the
surrounding terrain, respectively (both calculated within a moving window of nine pixels). Northness
and eastness were calculated with ArcGIS 10.2, and TPI and slope unevenness were derived using the
raster package in R [51]. Food availability was described using the modelled probability of chamois
and ibex occurrence, the two main sources of food for bearded vultures, which thus served as a proxy
for food supply (for methodological details see [45], electronic supplementary material, Appendix A).
Finally, average wind speed at 100 m.a.g.l. with a spatial resolution of 100 m was extracted from the
Swiss Wind Atlas [48]. Pairwise Spearman’s correlations between all continuous environmental
variables were |rs| < 0.6, calculated based on 10 000 random locations. Categorical variables (i.e. land
cover and geology) were one-hot encoded while continuous variables were normalized using the
mean and standard deviation derived from the training dataset.

https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
https://biblio.unibe.ch/maps/bis/publications/dl-oef21.html
https://biblio.unibe.ch/maps/bis/publications/dl-oef21.html
https://biblio.unibe.ch/maps/bis/publications/dl-oef21.html
https://data.geo.admin.ch/ch.swisstopo.geologie-geotechnik-gk200/
https://data.geo.admin.ch/ch.swisstopo.geologie-geotechnik-gk200/
https://data.geo.admin.ch/ch.swisstopo.geologie-geotechnik-gk200/
https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html
https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html


Table 1. Environmental predictors used to model the probability of bearded vultures flying below 200 m.a.g.l. (i.e. within the
flight altitude range swept by wind turbine blades) across the Swiss Alps, with indication of unit of measurement, abbreviation
and data source.

category description unit abbreviation source

land cover landcover Vector 25a

geology geology gk200b

topography sine of the aspect −1 to 1 eastness DHM25c

cosine of the aspect −1 to 1 northness DHM25

slope degree slope DHM25

slope unevenness index slope_unev DHM25

topographic position indexd index tpi DHM25

food ibex occurrence probability 0–1 ibex Vignali et al. [45]

chamois occurrence probability 0–1 chamois Vignali et al. [45]

climate average wind speed at 100 m above ground m s−1 windspeed BFEe

aDigital cartographic model of Switzerland: https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html.
bSimplified geotechnical map of Switzerland [46].
cDigital height model of Switzerland: https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html.
dTopographic position index according to Wilson [47].
eSwiss Wind Atlas [48].
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2.2. Species data and data processing
Between 2005 and 2020, as part of the Alpine reintroduction programme, 97 bearded vultures were
equipped with GPS loggers (battery or solar-powered). GPS devices were fitted with a leg loop
harness [52] and birds were released at several release sites in four different countries: Austria, France,
Switzerland and Italy. All birds but one were tagged as fledglings; 81 were captive-bred and 16 wild-
hatched. In addition, one adult bird, released in 1999, was tagged in 2017 after recapture,
rehabilitation and re-release. Loggers from different manufacturers and relying on various power
sources were deployed, and GPS locations were collected with a very heterogenous schedule. For
example, some devices were programmed to collect bursts with high frequency resolution (1 Hz) as
long as the bird was moving and the battery was sufficiently charged. Others collected GPS locations
at 1 min resolution under similar conditions, while some devices recorded data with even lower
temporal resolution. Since we were interested in modelling the flight altitude above ground level, we
selected only data collected by GPS devices that simultaneously recorded information on both flight
altitude and instantaneous ground speed so that non-flight locations could be excluded from the
analysis (see below). Some of the devices provided flight altitude estimates relative to the mean sea
level while others measured it relative to the earth ellipsoid. In the latter case, flight altitude measures
were converted to altitude relative to the mean sea level using the method described by Poessel et al.
[53] (electronic supplementary material, Appendix S1). The altitude relative to the mean sea level was
then used to estimate the flight altitude above the ground level by subtracting the ground elevation
extracted from the digital elevation model at each GPS location.

Several authors described the problem of negative flight altitude values estimated from GPS locations
(see for example [53–56]). Negative flight altitude values are essentially due to the sum of errors in the
measure of the altitude and/or position provided by the GPS tag and in the interpolation of the digital
elevation model used to calculate the flight altitude relative to ground level. Visual inspection of GPS
locations collected at 1 Hz resolution showed that most negative flight altitude values occurred close
to steep slopes suggesting a significant influence of the position error in generating negative values.
To reduce the position error we culled our data by removing observations with a horizontal dilution
of precision (HDOP)≥ 10 (when the HDOP was provided), which correspond to an error of about
30 m [55] or by discarding all locations with an error greater than or equal to 30 m using the position
error provided by the manufacturer. Moreover, we retained only locations with a flight altitude above
ground level within the range of −50 to 4000 m [24], assuming that values outside of this range were
probably generated by an erroneous measure of the flight altitude.

https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
https://www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html
https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html
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In order to ensure that the locations retained for our analysis were all collected from flying vultures
we considered a combination of two criteria. First, we selected only GPS locations recorded during the
day, from sunrise to sunset, using the R package suncalc [57]. Second, we removed all locations whose
instantaneous ground speed was less than 2 m s−1 and flight altitude was less than 100 m.a.g.l. [24].
Thresholding in this manner might have removed some valid flying positions, but we preferred to be
conservative and avoid the risk of including non-flight locations. Finally, for each bird we selected
only observations collected within the Swiss Alpine range, removed all GPS locations recorded during
the first eight weeks after fledging to reduce a potential bias related to the release event, and sampled
one observation per minute in the case of bursts collected at 1 Hz resolution. This last step was
necessary to avoid an overrepresentation of the vultures that collected high temporal resolution data.
All birds for which at least 100 locations were available after the filtering process have been retained
for the analysis.
 os

R.Soc.Open
Sci.9:211041
2.3. Modelling approach
Tracking animals with GPS devices has expanded over the last years and new generation loggers are able
to collect many locations at fine temporal resolution [58,59]. Processing a large amount of data is
challenging and computationally expensive. Often data are heavily subsampled not only to reduce
autocorrelation problems but also to meet computational capacities of classical statistical approaches
[24,33]. On the other hand, more recent techniques that require large datasets, like machine learning
algorithms and, especially, artificial neural networks, can capture complex nonlinear relationships
present in the data. In this regard many tools have been developed to speed up computation with
graphics processing unit (GPU) acceleration and create data pipelines to efficiently pre-process data
before model training. Artificial neural networks gained popularity in many fields of biology during
the last decade [60]. For example, they have been used for behavioural classification from tri-axial
acceleration data [61–63] or from GPS data [64,65] and to model datasets with high temporal
resolution [63,64,66].

In order to make use of all information included in the data and also develop a method that easily
scales to potentially very large datasets, we used a deep feedforward neural network to model the
probability of a bearded vulture flying within a given altitude range at a given location. Considering
the still ongoing trend of increasing heights of newly constructed, modern wind turbines, we decided
for a threshold of 200 m (hereafter referred to as critical altitude), below which the flight of a bird is
deemed to be at potential risk of collision with the rotor blades (see also [33,34]). The flight altitude
was converted to a binary response with 1 being a location within the critical altitude range and 0
otherwise. Our model was defined and trained within the tensorflow framework [67] and using the
keras R package [68]. The Keras application programming interface (API) allows great flexibility in
defining the architecture of a neural network. We used two hidden layers connected by a dropout
layer and a single unit as output of the network that used a sigmoid activation function (for model
implementation, see R code in Dryad Digital Repository [69]). A dropout layer acts as a regularization
layer by randomly deactivating some units during training, thus reducing the risk of overfitting the
training data [70]. The model was trained to minimize the binary cross-entropy loss function using the
Adam optimizer.

During the modelling process, we first conducted a grid search experiment to identify the best model
architecture, varying the number of units in the hidden layers independently from 16 to 512, each time
doubling the number of units (i.e. 16, 32, 64, 128, 256 and 512), and searching the rate of the dropout layer
in the range 0.2–0.7 with increments of 0.1. This resulted in a total of 216 different model configurations.
We trained the model on 70% of the data, used the remaining 30% for validation and stopped model
training when the area under the receiver operating characteristic (ROC) curve (AUC) [71] computed
for the validation dataset did not increase for more than 10 epochs.

In a second step, we used a cross-validation approach to evaluate the ability of the model to
generalize among different individual birds and for different zones of the study area. Using the best
model configuration, identified with the random search experiment, we trained 30 different models
for 20 epochs, each time leaving out the locations collected from a different bird on which the model
predictions were then evaluated. Similarly, we ran a spatial block cross-validation dividing the study
area into spatial blocks created with the blockCV R package [72]. The analysis of the spatial
autocorrelation among continuous variables, conducted using the function spatialAutoRange, suggested
a block size with a minimum side-length of 5719 m. We used 10 km blocks (electronic supplementary
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material, figure S1) to verify the ability of the model to generalize across wider areas. Using the blocks we
randomly partitioned the GPS locations within them, into five cross-validation folds.

As a third step, we investigated the contribution and the marginal effect that each environmental
variable had on the model predictions. The contribution of different variables was estimated via their
permutation importance using the vip R package [73] and measuring the drop in AUC, while the
marginal effect of the environmental variables was investigated using individual conditional
expectation (ICE) [74] and partial dependence (PD) [75] plots created with the pdp R package [76].
ICE curves are generated for a given variable in the dataset, the range of which is subdivided into
a grid of n equally spaced values. For one observation in the dataset, predictions are made by
varying the focal variable within the grid while the other variables are kept constant, thus creating
a single ICE curve. The process is repeated for each observation, generating as many ICE curves as
there are observations in the dataset. This is a good method to show complex interactions among
variables while the overall effect is shown by the PD curve, which simply represents the average of
all ICE curves.

Finally, we evaluated model uncertainty by means of a bagging procedure [77]. We sampled the
training dataset (70% of the locations) 30 times, with replacement, and used the validation dataset to
stop model training when the validation AUC did not increase for more than 10 epochs. We then
used the 30 trained models to project predictions to the full extent of the study area and used the
mean of the 30 produced maps as final prediction. A 95% credible interval was also created to
identify areas were model predictions are more uncertain. The full extent prediction was visually
evaluated by field experts (R.A., D.H. and F.L.) to verify that known areas where the species flies
close or far from the ground were correctly identified by the model.

2.4. Conflict map for landscape planning
The map obtained from the above modelling represents the probability of a bearded vulture flying within
or below the critical zone swept by turbine blades, regardless of the habitat conditions being suitable for
the bearded vulture (i.e. independent of the probability of species occurrence). To identify areas within
actual species’ suitable habitat in which there would exist a risk of collision in case of wind turbine
installation, we combined the output of our previously developed habitat suitability model (see
Vignali et al. [45], fig. 4e, reported also in figure 3c) with the output of the model described in this
article. The joint probability of species occurrence and flying within the critical altitude range
(figure 3e) was calculated by taking the product of the two raster maps [34].

We also converted the predicted probabilities of a beaded vulture flying at risky altitudes into a
binary map by means of the threshold which held a sensitivity of 95% (electronic supplementary
material, figure S2). The resulting binary map was then intersected with the potential conflict map
described in Vignali et al. [45] (fig. 4d, reported alse in figure 3d ) in order to delineate the areas
within the habitat where the species flies within the critical altitude range which would be
particularly prone to collisions (figure 3f ). Hereafter this synthetic map is referred to as high-risk
conflict map.

The whole analysis was run in R [78] v. 4.0.2 through the RStudio software [79].
3. Results
3.1. Tracking data
After filtering, we retained data from 28 bearded vultures tagged in Switzerland, France and Austria and
tracked from September 2014 to December 2020. The quantity of collected locations, as well as the
number of tracking days, varied significantly among tagged individuals, with larger sample sizes in
birds released within Switzerland, and lower sample sizes in birds that only occasionally visited the
study area, stemming from release sites in the neighbouring countries (table 2). The number of
tracking days within the Swiss Alpine range varied from 5 to 1411 per individual while the duration
of the tracking period per individual varied according to the lifetime of the solar-battery system, any
device loss or deficiency, or in the case of a bird’s death. A total of 3 040 584 GPS locations were
retained after data cleaning, of which 73.9% were collected below 200 m.a.g.l. (average proportions
varying between individuals from 57.5% to 89.0%, table 2). After subsampling the GPS locations
collected at 1 Hz resolution, flight altitude was finally modelled based on 221 209 GPS locations.
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Figure 1. Permutation importance of the environmental variables used to model the probability of bearded vultures flying below
200 m.a.g.l. Permutation importance is presented as the drop in training AUC (%) when randomly permuting the values of the
respective variable within their empirical range. Variable abbreviations are given in table 1.
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3.2. Model architecture
The best model configuration identified during the grid search experiment was a deep feedforward
neural network with 256 units in the first hidden layer, a dropout rate of 40%, and 32 units in the
second hidden layer. This model had an AUC value of 0.730 for the training dataset and 0.708 for the
validation dataset. Overall, the model was able to generalize well across birds, which was indicated
by a mean training and testing AUC of 0.718 (s.d. = 0.004) and 0.703 (s.d. = 0.037), respectively
(electronic supplementary material, table S3), which was comparable to the performance of the model
trained using all birds. Similarly, the model showed a good ability to generalize across different
regions of the study area with a mean training and testing AUC of 0.713 (s.d. = 0.007) and 0.699
(s.d. = 0.015), respectively (electronic supplementary material, table S4).

3.3. Relative contribution of different variables and model predictions
The environmental conditions that mainly drove the probability of a bearded vulture flying within the
critical altitude range were steepness of the terrain, aspect, wind speed and food availability
(permutation importance of 30.6, 15.3, 13.2 and 11.9%, respectively) (figure 1). Bearded vultures were
more likely to fly at lower altitude (less than 200 m.a.g.l.) when approaching steeper slopes of south-
facing mountainsides compared with north-facing mountainsides (figure 2). Flying within the critical
altitude range was also more likely to occur in areas typically exposed to stronger winds compared
with areas with weaker winds. Over areas with a high probability of ibex presence, (i.e. sectors where
it is more likely to find ibex carcasses), the probability of flying below 200 m.a.g.l. was always high.
This pattern is evidenced not only by the PD curve, but also by the increasing concentration of the
ICE curves with increasing values of this variable. Overall, the probability of flying within the critical
altitude range was higher over areas dominated by scree and rocks compared with the remaining land
cover conditions (i.e. forest, anthropic areas, water bodies, etc.).

The combination of the potential conflict map (figure 3d ) with binary representation of the
probability of flying below the critical altitude of 200 m.a.g.l. (Figure 3b) revealed that about 77% of
the area suitable for the species is likely to be overflown within the critical altitude range (figure 3f ).
This area, ranging from 267 to 4502 m.a.s.l., represents 30.6% (7878 km2, table 3) of the overall
extension of the Swiss Alpine massif.
4. Discussion
The wildlife versus wind energy conflict model developed here extends commonly applied approaches of
predicting areas of potential collision risk with wind turbine blades based on mere species’ spatial
occurrences by adding the vertical dimension of flight behaviour. In effect, its predictions are refined
by quantifying the areas within which bearded vultures would effectively fly within or below the
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vertical segment of airspace swept by the blades of potential wind turbines. The projected map showing
the probability of bearded vultures flying below the critical altitude (figure 3a) revealed that wide areas
of the Swiss Alps are potentially prone to collisions. The probability of flight at risky altitudes was
particularly high along mountainsides and ridges. This is not surprising, since valleys are overflown
at high elevation, notably during commuting relocations. While this probability map gives a general
overview of the areas with environmental conditions favouring low flight altitudes throughout the
Swiss Alps, only the map resulting from the joint probability of species occurrence [38] and of flying
below the critical altitude range (figure 3e) encompasses the whole complexity of the species–habitat
associations, including ecological requirements and flight behavioural routines. By intersecting these
two probabilistic maps, we could filter out areas within the species’ habitat extension where it is
unlikely that bearded vultures would fly within the critical altitude range, (i.e. mainly the valley
bottoms), while we managed to highlight critical hotspots of potential conflict with wind energy
development.

Steep south-facing slopes dominated by strong winds and areas with high probability of ibex
presence (i.e. providing carcasses potentially exploitable by bearded vultures) offered the best
conditions for low-altitude flight (figures 1 and 2). Terrain steepness and exposure are indeed two key
factors explaining the formation of updraughts, specifically thermals and orographic updraughts.
Thermals are generated by unequal heating of the earth surface: solar radiation heats up certain land
cover types faster than others (e.g. dark rocky outcrops), thus generating columns of warm air that
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Figure 3. Graphical representation of the research approach used to model risk to bearded vultures from wind turbines. Maps show
the data layers combined to produce the risk maps that are the final product of that modelling exercise. The maps show (a) the
predicted probability of a bearded vulture flying below 200 m.a.g.l. calculated as the mean prediction of a 30-bagging procedure
and extrapolated to the whole Swiss Alpine range; (b) the probability of bearded vulture occurrence described in fig. 4e in [45];
(c) joint probability of occurrence and flying below 200 m.a.g.l., calculated as the product of maps (a) and (b). These probability
maps are shown with a gradient ranging from blue: zero probability, to red: high probability. The map shown in (d ) is the
translation of map (a) into a binary response using the threshold for which 95% of the locations occurring at risky altitudes
are correctly predicted (the areas with a high probability that a bearded vulture flies within the critical altitude range are
shown in red); (e) the ‘potential conflict map’ described in fig. 4f in [45] with increasing risk represented by an increasing
intensity of red (see [45] for further explanation); ( f ) the ‘high-risk conflict map’ calculated as the product of (d) and
(e). The Swiss Alpine range is represented in light grey in (d ), (e) and ( f ).
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rise from the ground. Orographic updraughts stem from the upward deviation of wind blowing against
mountainsides. Although the former occur mostly along sun-exposed rocky slopes and over flat areas
[80], the latter are generated exclusively along slopes and ridges. While thermals in lowlands are
furthermore easily disrupted by dominant winds, mountain regions supply a year-round source of
updraughts, thus providing optimal conditions to support the flight of raptors exhibiting high wing-
loading such as vultures [81]. In addition, orographic updraught tends to subside with altitude, thus
keeping soaring birds flying at lower altitudes than when exploiting thermals [55]. In line with this,
various studies have shown that raptors fly relatively low over ridges and steep slopes [33,55,82]
where orographic updraught is more likely to occur. As shown here, bearded vultures are no
exception to that rule.

While static and/or dynamic environmental conditions are frequently included to model flight
behaviour in relation to potential collision risk with wind turbines [33,34,54,55,82], the spatial
distribution of natural food supply has—to the best of our knowledge—never been considered so far
(but see [34] which considered the distance from artificial feeding sites). Our model ranked this
environmental variable with an importance similar to aspect or wind conditions in explaining the



Table 3. Percentage of shares of the different levels of sensitivity (increasing from 1 to 4) predicted in the potential conflict
map (figure 3e) and the high-risk conflict map (i.e. where the bearded vulture is likely to fly within the critical altitude range,
i.e. below 200 m.a.g.l., figure 3f ) in the whole Swiss Alps. The last column reports the shares of areas where the bearded
vulture is likely to fly above the critical altitude within the habitat.

level of sensitivity potential conflict map high-risk conflict map remaining

1 12.3 8.4 3.9

2 11.0 8.5 2.6

3 7.2 5.8 1.4

4 9.2 7.9 1.2

total 39.7 30.6 9.1
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probability of flying within the critical altitude range. Vultures, and large soaring birds in general, are
constrained in their movements by the availability of updraughts. By soaring into ascending air
currents for gaining altitude and then gliding to another location [83], they achieve an energy-efficient
commuting pathway [84,85]. However, the optimal altitude to be gained with soaring is likely to
result from a trade-off between mobility for long-range horizontal displacement and the ability
to inspect the ground for locating food, the latter diminishing with altitude [86]. This might be
particularly crucial for bearded vultures which, given their peculiar bone-based diet [87,88], have to
locate carrion and small parts of carcasses that may be easily overlooked. Ibex carcasses represent the
most important food supply of Alpine bearded vultures, to an extent that their distribution is largely
driven by the presence of that ungulate species [42,45]. Our model emphasizes the importance of that
ecological requirement, since the probability of flying within the dangerous altitude range was always
high over areas with high probability of ibex presence, regardless of the other environmental
conditions (figure 2). That a similar pattern was not found for chamois, another important food
source for Alpine bearded vultures, is not surprising, because chamois’ distribution is much more
uniform, as the species is less dependent on a rocky substrate than ibex. Several studies have shown
that food resources affect habitat use of vulture species [34,89–93]. Here, we have demonstrated that
the spatial distribution of the main source of food can also affect the flight altitude behaviour.
Investigating the effect of food supply on flight altitude behaviour may, therefore, help to improve the
estimate of potential conflicts with wind energy development, also for other raptor species that are
more broadly distributed across the landscape.

Given that the majority of the GPS locations (73.9%) indicated flight activity at altitudes lower than
200 m.a.g.l. (electronic supplementary material, figure S3), bearded vultures in the Swiss Alps seem to be
active most of the time in the dangerous altitude range. This concurs with former findings by Rushworth
& Krüger [25] who estimated that south African bearded vultures spend 74.6% of their foraging time
below 200 m.a.g.l. Similarly, Reid et al. [34] found that bearded vultures in South Africa spent the
majority of their time below the critical altitude (66% and 55% for non-adults and adults,
respectively). As a result, our final high-risk conflict map shows that 77.0% of the area of suitable
habitat across the Swiss Alps (i.e. 30.6% of the entire Swiss Alpine range) may incur some potential
collision risk (figure 3f, table 3).

We used two different validation approaches to assess the ability of our model to generalize across
individuals and geographical regions within the Swiss Alps. In this respect, the leave-one-bird-out
cross-validation is important to ensure that model predictions are not biased by individuals with a
prevailing number of GPS bearings. Only five birds out of 28 (i.e. W361, BG980, BG998, BG797 and
BG843, electronic supplementary material, table S3) caused some marked drop of the AUC when used
to evaluate the model. These notwithstanding, a few birds yielded GPS locations exclusively from one
part of the study area (e.g. only in western, central or eastern Swiss Alps), while most of them
roamed across the entire Swiss Alpine massif. The similarly good AUC values obtained across the
individuals confirm the reliability of our model extrapolations to the entire study area. Finally, the
spatial block cross-validation further reinforced the validity of the model throughout the study area,
given that it performed equally well for predicting the locations in the spatial blocks not used for
model training [94].

The AUC values yielded by validation were not particularly high, although comparable with those
obtained by Reid et al. [34] for the bearded vulture population inhabiting southern Africa. A model
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with an AUC greater than 0.7 is considered to be sufficiently accurate for discriminating positive from
negative classes (i.e. distinguishing between locations where bearded vultures flew below versus
above the critical altitude range) [95]. Since bearded vultures may fly both above and below the
critical altitude range within any given place, there will always be situations where the model
correctly predicts one class and therefore incorrectly predicts the other, resulting in low AUC values.
In addition, there are plenty of situations for a mountain raptor, especially near sheer cliffs and steep
slopes, where a small horizontal displacement can significantly change the altitude above ground
level, and thus the respective flight altitude class. Similarly, even tiny inaccuracies in GPS bearings
collected in the vicinity of cliffs can affect the allocation to one of the two altitude flight classes. The
AUC is a valid threshold-independent metric useful to evaluate the overall model performance—
which is the reason why we relied on it to tune the model’s hyperparameters and to check the ability
of the model to generalize across birds and areas. However, one always benefits from a final,
complementary validation by visually inspecting how the model performs in known areas where the
birds have been regularly observed. Finally, a bagging procedure was carried out, which showed that
model predictions remained stable over repetitions (electronic supplementary material, figure S5).

Selecting a threshold to convert a probability map into a binary map is always a critical step because
it eventually determines the classification skills of the model. The Youden index, maximizing sensitivity
plus specificity, is probably the most frequently used threshold approach for classifying species
distribution models [96]. It has already been applied to flight altitude models [33]. However, when the
conservation of an endangered and vulnerable species is at stake, the ability of a model to correctly
predict the risk-class is the most important aspect, even if it comes at the expense of the accuracy in
predicting the other class. Applying the principle of precaution, we, therefore, chose a threshold that
held a true positive rate of 95% since we considered it especially important to correctly predict
locations where the species flew within the critical altitude range. By doing so we were fairly
conservative, accepting the risk that some flight locations above 200 m.a.g.l. were wrongly classified
into the critical flight altitude range. The resulting probability map (figure 3b) might thus
overrepresent critical areas, which is a minor issue from a conservation and risk assessment
viewpoint. Therefore, the map showing areas with high risks of conflict (figure 3f ) is a refinement of
our previous conflict map [45] since it subtracts the areas over which the species is likely to fly high
above the ground. Although we adopted a conservative approach, our results suggest that bearded
vultures fly above the critical altitude range in about 9.1% (2351 km2) of the areas previously
classified as having high conflict potential.

A potential limitation of our study, however, may be the under-representation of adult birds in the
dataset. Bearded vultures reach adult plumage at the age of 5–6 years [97]. As they develop from the
juvenile (less than 2 years) to the adult age, some morphological characteristics that may influence
flight behaviour gradually change [98]. Our dataset includes four birds that collected data up to
6 years and two birds that reached the adult age (6 years according to [98]). Moreover, 10 birds
(i.e. more than a third) recorded data for more than 3 years, the age at which immature bearded
vultures change their flight behaviour, shifting from an exploring phase to a phase of territory
establishment [42,45]. Despite adults being less represented than the other age classes, there are no
prominent morphological differences between subadult and adult birds that would suggest differences
in their flight altitude patterns. In line with this, other authors found that in soaring raptors the bird’s
age influences its ranging behaviour [34,99] but not its flight behaviour [100,101].

Our model was developed in a framework particularly suitable for very large datasets. In effect,
modern tracking devices are capable of collecting data at high temporal resolution, thereby
introducing new challenges for their analysis [58,59]. The use of artificial neural network approaches
is a possible solution to address this challenge. First, contrary to other classical statistical methods, it
does not require an a priori definition of the functional forms for each relationship between predictors,
[102] as complex nonlinear relationships among variables are learned directly from the data. Second,
it can take advantage of specific libraries developed to create efficient data pipelines (see for example
the tensorflow dataset library and its R implementation [103]). Data pipelines serve for transformations
like normalization, standardization and one-hot encoding of categorical variables on batches of data
that are then fed into the neural network. This way it is not required to apply each transformation to
the entire dataset but rather to the single batches, and the data can be loaded in batches directly from
a file or database (see R code in Dryad Digital Repository [69]).

Although innovative in several respects, our approach focuses only on one species potentially affected
by wind turbine deployment. We believe, however, that a similar method could be readily applied to any
other raptor species, if not to other soaring birds such as storks or herons, for which flight altitudes might
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also be decisive. Of course, a combination of species-specific predictive models obtained from different
emblematic species potentially impacted by the wind industry development would be a major step
towards a biodiversity-friendly spatial planning. Policy makers and land-use planners, wind energy
promoters and conservation biologists would all benefit from the rapid development of such
comprehensive decision tools. Wind energy companies, in particular, could evaluate from the onset
whether their investments would be at risk of not obtaining official approval. It must be explicitly
stressed, however, that models such as the one presented here can inform spatial planning but in no
way represent substitutes to in situ environmental impact assessments that are prerequisites for any
infrastructure project development.
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