Monat 2006
Grundlagenbericht | Ökologische Auswirkungen künstlicher Beleuchtung
Mit Licht und Schatten sorgfältig umgehen

Grün Stadt Zürich wünscht sich anstelle des ungezielt verstreuten Lichtes einen umweltverträglichen Umgang mit Licht: Künstliche Beleuchtung ja, aber gezielt und überlegt eingesetzt.

Die vorliegende Studie ist ein schönes Beispiel der erfolgreichen Zusammenarbeit des Amtes für Städtebau und Grün Stadt Zürich. Ich hoffe, dass die Erkenntnisse der Studie möglichst breite Wirkung entfalten werden, und freue mich darauf, in Zukunft eine Stadt Zürich zu erleben, die den sorgfältigen Umgang mit Licht und Schatten pflegt und sich damit ins rechte Licht rückt.

Karin Hindenlang
Geschäftsbereichsleiterin Naturförderung
Grün Stadt Zürich
INHALTSVERZEICHNIS

Editorial Herausgeberin ... 1

1 Zusammenfassung: Ökologische Auswirkungen künstlicher Beleuchtung ... 7
 Effekte von Licht auf Pflanzen, Tiere, Mensch und Lebensgemeinschaften ... 7
 Pflanzen ... 7
 Wirbellose ... 8
 Fische ... 8
 Amphibien und Reptilien ... 9
 Vögel .. 9
 Säugetiere ... 10
 Menschen ... 10

2 Einführung ... 11
 Lichtverschmutzung – Lichtimmission ... 11

3 Methoden ... 12
 Verwendete Literatur und Grundlagen .. 12
 Übersichtsdarstellungen ... 12
 Spezifische Untersuchungen .. 12
 Einzelereignisse, Zitate von Personen 12
 Beurteilungen, Empfehlungen .. 12

4 Auswirkungen von Licht auf Pflanzen, Tiere und Menschen 13
 Allgemeine Grundlagen .. 13
 Naturtag synchronisiert circadiane Rhythmik 13
 Lichtintensitätsänderungen bestimmen endogene Rhythmik 13
 Licht beeinflusst Periodenlänge von Tagesrhythmus 13
 Gen für die innere Uhr ... 14
 Ökologischer Vorteil des Photoperiodismus 14
 Auswirkungen der Lichtqualität .. 15
 Beleuchtungsstärke und ihre Auswirkungen 15
 Hell-Dunkel-Adaptation des menschlichen Auges 16
 Reaktionen von Insekten auf UV-Licht und Licht blauer Wellenlänge (bis ca. 490 nm) ... 16
 Reaktion von Tieren auf Licht im grünen bis roten Wellenbereich ... 17
 Indirekter Effekt von unterschiedlichem Licht auf Fledermäuse .. 18
 Licht blauer Wellenlänge und Melatonin beim Menschen 18
 Effekte von Licht auf Pflanzen .. 20
 Allgemeine Bedeutung von Tageslicht für Pflanzen 20
 Tageszeitlicher Rhythmus im Naturtag 20
 Tageslänge löst Blütenbildung aus ... 21
Effekte von Licht auf Tiere

Artspezifische Phototaxis

Photoperiodische Effekte auf Insekten

Mondlicht steuert Entwicklungszyklen von Zuckmücken

Lichtabhängige Vertikalwanderung des Zooplanktons

Photoperiodische Effekte auf Schnecken

Lichtempfindliches Hirnorgan bei Echsen

Lichtdurchlässige Schädeldecke bei Vögeln

Lichteinfluss auf Melatonin-Produktion bei Säugetieren

Auswirkungen von künstlichem Nachtlicht auf Tiere und den Menschen

Invertebraten (Wirbellose)

Anziehung von Fluginsekten

Anlockwirkung auf Wasserinsekten

Mechanismus der Anlockwirkung von Insekten und Konsequenzen

Anziehung und Meidung bei Spinnen

Veränderung der Vertikalwanderung von Wasserflöhen

Kommunikation bei Glühwürmchen

Fische

Lichtabhängigkeit der Reproduktion

Aktivitätsänderungen

Künstliche Beleuchtung als Leitsignal

Anziehung von Feinden

Amphibien

Blendung – Anziehung – Vermeidung von Licht

Verändertes Fortpflanzungsverhalten

Reptilien

Desorientierung von Meeresschildkröten

Aktivitätsanpassung – Beutefang – Risiko

Vögel

Lichtregime beeinflusst Reproduktion bei Hühnern

Kombination von Licht und Nebel als Gefahr für Zugvögel – Mechanismus

Zugvögel im Lichtdom über Agglomerationen

Zugvögel in der Lichtsphäre von kleineren beleuchteten Arealen

Towerkill

Kollision mit erleuchteten Wolkenkratzern

Fehlgeleitete Meeresvögel

Reaktion auf plötzliche Lichtreize

Vogelgesang zu Unzeiten

Strassenlicht und Nestdichte bzw. Brutbeginn von Uferschnepfen

Schlafplätze im Schutze des Lichts?
1 ZUSAMMENFASSUNG: ÖKOLOGISCHE AUSWIRKUNGEN KÜNSTLICHER BELEUCHTUNG

Effekte von Licht auf Pflanzen, Tiere, Mensch und Lebensgemeinschaften

Pflanzen
Bis heute wurden unzählige Untersuchungen ausgeführt, welche die Mechanismen sowie Wechselwirkungen von Lichtwahrnehmungen und Tagesrhythmen bei Pflanzen zum Thema haben. Genauere Untersuchungen über die Auswirkung der längeren Photoperiode durch künstliche Nachtbeleuchtung auf Pflanzen in natürlicher Umgebung fehlen jedoch.

Wirbellose

Fische

Amphibien und Reptilien
Amphibien sind fast ausschließlich nachtaktiv. Bei Beleuchtung erscheinen bestimmte Amphibien eine Stunde später aus ihrem Versteck und verlieren dadurch Zeit für die Nahrungssuche. Künstliche Nachtbeleuchtung blendet Frösche und Kröten, sodass sie Schwierigkeiten haben, Beute (Insekten) zu fangen. Andererseits werden sie von Licht angezogen, sobald sich ihre Augen daran gewöhnt haben, und die Beutejagd kann sich sogar einfacher gestalten, wenn sie die Nahrung durch die Beleuchtung sehen oder das Licht eine grosse Menge an Beute angezogen hat. Allerdings besteht dadurch die Gefahr, dass sie ihrerseits zur leichten Beute werden.

Künstliche Nachtbeleuchtung gefährdet die Fortpflanzung von Froscharten, die sich nur bei sehr geringen Lichtverhältnissen paaren oder bei hellem Licht nicht rufen und sich unter diesen Umständen auch nicht paaren können.

Bei Eidechsen wird die Bewegungsaktivität, die Tätigkeit der Keimdrüsen und der Farbwechsel allein durch ein lichtempfindliches Gehirnorgan, d. h. über die Schädeldecke, gesteuert. Bei künstlicher Beleuchtung muss deshalb mit schwer wiegenden Veränderungen gerechnet werden.

Vögel

Beim Einfliegen in einen starken Lichtkegel (z.B. Skybeamer) zeigen nachts ziehende Vögel eine Schreckreaktion, indem sie von ihrer ursprünglichen Flugrichtung abweichen und ihre Fluggeschwindigkeit reduzieren.

Säugetiere

Menschen

2 EINFÜHRUNG

Kunstlicht in Aussenräumen ist zu einem wichtigen Bestandteil unserer Kultur geworden. Licht wird heute jedoch im Übermass verbraucht und strahlt auch in Räume aus, wo es nicht nötig ist. Es kann ökologisch und landschaftlich lästige oder schädliche Auswirkungen haben.

Lichtverschmutzung – Lichtimmission

«Lichtemission ist die in Richtung, Quantität und Qualität emittierte Strahlung innerhalb des Infrarot-, des sichtbaren Lichts und des UV-Lichts in Aussenräumen, die auf den Raum neben, unter und über uns ökologisch und landschaftlich lästige oder schädliche Auswirkungen haben könnte.»
Verwendete Literatur und Grundlagen

Für die Zusammenstellungen über Auswirkungen von Licht allgemein und künstlichem Nachtlicht sowie deren Beurteilung und die daraus abgeleiteten Empfehlungen dienten qualitativ unterschiedliche Unterlagen. Um den vorliegenden Bericht transparent zu machen, werden die verwendeten Grundlagen im Folgenden kurz vorgestellt.

Übersichtsdarstellungen

Spezifische Untersuchungen

Einzelereignisse, Zitate von Personen

Beurteilungen, Empfehlungen

Allgemeine Grundlagen

Die unten stehende Zusammenfassung bezieht sich auf die internationale Literatur bis zum Februar 2006 und zeigt die allgemeinen Mechanismen zwischen Licht und innerer Uhr auf. Sie stützt sich auf Häder (2004).

Naturtag synchronisiert circadiane Rhythmik

Alle Organismen, d. h. Bakterien und andere Prokaryonten, Algen, Pilze, Pflanzen, Tiere und natürlich auch die Menschen verfügen über eine ausgeprägte innere Uhr. Endogene Rhythmen erfolgen ohne äussere Reize, sondern werden durch die innere Uhr gesteuert, können aber durch externe Zeitgeber synchronisiert werden. Die Zeit zwischen zwei Maxima eines rhythmischen Vorgangs, die so genannte Periode, beträgt beim natürlichen Tag-Nacht-Wechsel 24 h, kann aber auch kürzer oder länger sein, weshalb von circadianer Rhythmik gesprochen wird.

Die Periodenlänge «freilaufender» (nicht synchronisierter) endogener Rhythmen ist signifikant von 24 h verschieden. Sie ist genetisch determiniert und kann je nach Organismus zwischen 15 h und 30 h betragen. Im Naturtag werden diese Rhythmen jedoch alle auf eine Periodenlänge von 24 h synchronisiert. Licht-Dunkel-Wechsel mit Periodenlängen kürzer als 21 h oder länger als 27 h werden meistens nicht mehr nachvollzogen.

Lichtintensitätsänderungen bestimmen endogene Rhythmik

Im natürlichen Tagesablauf kommen sowohl Temperatur- als auch Lichtintensitätsänderungen vor. Experimente mit gegeneinander phasenverschobenen Temperatur- und Licht-Dunkel-Wechseln zeigen, dass die meisten Pflanzen und viele Tiere vorwiegend den Licht-Dunkel-Wechsel beantworten und die endogene Rhythmik recht schnell daran anpassen, den Temperaturwechsel hingegen ignorieren.

Der wichtigste Faktor für die Synchronisation eines Systems im Naturtag scheinen die Helligkeitsunterschiede bei Sonnenaufgang und -untergang zu sein. Experimentell erzeugte Helligkeitsunterschiede von 1 Lux wirken in einigen Fällen bereits synchronisierend. Helligkeitsunterschiede zwischen 1 und 10 Lux treten etwa eine halbe Stunde vor Sonnenaufgang und nach Sonnenuntergang auf (vgl. Tab. 1).

Licht beeinflusst Periodenlänge von Tagesrhythmus

Auch die Periodenlänge des Tagesrhythmus ist von der Lichtintensität abhängig. Werden Organismen bei Dauerlicht (24 h) unterschiedlichen konstanten Lichtintensitäten ausgesetzt, so reagieren vor allem nachtaktive Tiere wie Mäuse bei steigender Helligkeit mit einer Zunahme der Periodenlänge, während bei tagaktiven Tieren wie Vögeln die Periodenlänge abnimmt.
Bei Tieren sind Licht blauer und roter Wellenlänge sowie Infrarotstrahlung bei der Auslösung endogener Rhythmen wirksam (vgl. Tab. 2). Die Lichtperzeption erfolgt meistens durch die Sehpigmente, jedoch liess sich bei Arthropoden und Vertebraten (z. B. Vögeln) auch eine Lichtabsorption durch das Gehirn oder Teile des Gehirns mit extraretinalen Rezeptoren nachweisen.

Gen für die innere Uhr

Ökologischer Vorteil des Photoperiodismus

Im gesamten Tierreich findet man eine Fülle von lichtsynchronisierten, rhythmischen Wachstums-, Entwicklungs- und Reproduktionsvorgängen. Bei den meisten Wirbeltieren, die ausserhalb der Tropen leben, wird der Reproduktionszyklus durch die Photoperiode reguliert. Die Wirkungsmechanismen und die Kausalketten für die Auslösung und Aufrechterhaltung photoperiodischer Reaktionen sind bisher weder im Tierreich noch im Pflanzenreich hinreichend aufgeklärt.
Auswirkungen der Lichtqualität

Beleuchtungsstärke und ihre Auswirkungen

In der folgenden Tabelle sind einige Beleuchtungsstärken von Natur- und Kunstlicht und deren Auswirkungen zusammengetragen.

Tab. 1 Beleuchtungsstärke und Auswirkung: Die Beleuchtungsstärke gibt an, wie viel Lichtstrom auf eine Flächeneinheit fällt. Sie wird in Lux (lx) gemessen.

<table>
<thead>
<tr>
<th>Lux</th>
<th>Beispiel/Auswirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>Sternklarer Nachthimmel</td>
</tr>
</tbody>
</table>
| 0.1/0.25 | Beleuchtung durch Vollmond (Pauley 2004/Wikipedia). Der Melatoninspiegel des Menschen wird am stärksten reduziert, wenn die Probanden bei offenen Augen für 90 Minuten zwischen 2 und 3 Uhr 30 morgens mit monochromatischem blauem Licht der Wellenlänge 464 nm und einer Helligkeit von nur 0,1 lx ausgesetzt wurden (Pauley 2004).
| | 0,1 lx reichen aus, um die vertikale Verteilung von aquatischen Invertebraten zu beeinflussen (Moore et al. 2000). |
| 0,2 | Weißes Dämmerlicht von nur 0,2 lx reichen aus, um Melatonin bei Ratten zu unterdrücken, was zeigt, wie hochsensibel bei diesen Tieren das circadiane System ist, das durch Licht auf der Netzhaut in Gang gesetzt wird (Pauley 2004). |
| 0,5 | Bei der Zuckmücke *Clunio marinus* lassen sich durch schwache Beleuchtung mit 0,5 lx experimentell rhythmische Schläfaktivitäten auslösen (Häder 2004). |
| 1 | Helligkeitsunterschiede von 1 lx wirken in einigen Fällen bei Organismen bereits synchronisierend (auf 24-h-Rhythmus des Naturtages) (Häder 2004). |
| 1 – 10 | Helligkeitsunterschiede zwischen 1 und 10 lx treten etwa eine halbe Stunde vor Sonnenaufgang und nach Sonnenuntergang auf (Häder 2004). |
| 300 | Schulzimmerbeleuchtung von Tagesschule. Das Wachstum der Lebertumorzellen bei Rattenversuchen war ähnlich bei weissem Licht von der Helligkeit 300 lx wie bei 0,2 lx (Pauley 2004). Bei Ratten, die im Dauerlicht bei 300 lx gehalten wurden, nahmen die Krebszellen mehr Fettsäure (*Linoleic acid*) auf und wuchsen schneller als bei Ratten in normaler Licht-Dunkel-Umgebung (Pauley 2004). |
| 500 | Bürobeleuchtung, Beleuchtung Arbeitsstätte im Innenraum SN EN 12464. |
| 20000 | Bedeckter Sommertag (Wikipedia). |
| 100000 | Heller Sommertag (Wikipedia). |
Hell-Dunkel-Adaptation des menschlichen Auges

Reaktionen von Insekten auf UV-Licht und Licht blauer Wellenlänge (bis ca. 490 nm)

Bei den meisten Insekten weisen die Aktionspektren für photoperiodische Reaktionen einen Wirkungsgipfel im Blaubereich um 450 nm auf (Häder 2004).

konkurrenz und Abwanderung der Insekten zur Lampe mit «attraktiverem» Spektrum statt, also beispielsweise von der Natrium- zur Quecksilberdampflampe (Scheibe 2000).

Bsp.: Das weisse Licht von Quecksilberdampf-Strassenlampen interferiert offenbar auch mit der normalen Fähigkeit des Tympanalorgans bestimmter Motten, die Ultraschallrufe von Fledermäusen wahrzunehmen und diesen Feinden zu entgehen (Svensson & Rydell 1998).

Tab. 2 Spektralfarben: Das für Menschen sichtbare Licht erstreckt sich von 380 bis 780 nm. Die Übergänge zwischen Farben sind fließend. UV- und IR-Licht sind für uns nicht sichtbar, wurden jedoch in der Tabelle ergänzt (grau hinterlegt), da Organismen auch Reaktionen auf Licht dieser Wellenlängen zeigen (Tabelle aus Wikipedia).

<table>
<thead>
<tr>
<th>Farbton</th>
<th>Wellenlänge 1 nm = 10 – 9 m</th>
<th>Wellenfrequenz 1 THz = 1012 Schwingungen/sec</th>
<th>Energie pro Photon eV = Elektronenvolt (Energie, die Elektron aufnimmt, wenn es das Spannungsgefälle von 1 V durchläuft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(UV-Strahlung)</td>
<td>10 – 380 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violett</td>
<td>380 – 420 nm</td>
<td>789 – 714 THz</td>
<td>3.26 – 2.95 eV</td>
</tr>
<tr>
<td>Blau</td>
<td>420 – 490 nm</td>
<td>714 – 612 THz</td>
<td>2.95 – 2.53 eV</td>
</tr>
<tr>
<td>Grün</td>
<td>490 – 575 nm</td>
<td>612 – 522 THz</td>
<td>2.53 – 2.16 eV</td>
</tr>
<tr>
<td>Gelb</td>
<td>575 – 585 nm</td>
<td>522 – 513 THz</td>
<td>2.16 – 2.12 eV</td>
</tr>
<tr>
<td>Orange</td>
<td>585 – 650 nm</td>
<td>513 – 462 THz</td>
<td>2.12 – 1.91 eV</td>
</tr>
<tr>
<td>Rot</td>
<td>650 – 750 nm</td>
<td>462 – 400 THz</td>
<td>1.91 – 1.65 eV</td>
</tr>
<tr>
<td>(IR-Strahlung)</td>
<td>750 – 1000 nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reaktion von Tieren auf Licht im grünen bis roten Wellenbereich

Bsp.: Bei Wasserinsekten zeigten Versuche mit verschiedenen Lichtspektren, dass das gelbe Licht der Natrium-Wellenlinie vom Intensitätsmaximum bei 579 nm die grösste Attraktivität hatte (z. B. Zuckmücken Chironomidae), dann folgte das blaue Licht auf 437 nm und zuletzt das orangefarbene Licht mit Intensitätsmaximum bei 599 nm (Scheibe 2000; vgl. Tab. 3).

Indirekter Effekt von unterschiedlichem Licht auf Fledermäuse

Licht blauer Wellenlänge und Melatonin beim Menschen

Beim Menschen liegt die grösste Empfindlichkeit der Photorezeptoren, welche die circadiane Uhr und damit vielfältige Körperfunktionen regulieren, bei blauem Licht zwischen 464 und 484 nm (vgl. Kapitel *Blaues Licht in der Nacht und Melatonin-Produktion*, S. 37). Bsp.: Menschen, die 6.5 h blauem Licht der Wellenlänge 460 nm ausgesetzt waren, zeigten eine zweimal grössere Verzögerung der circadianen Phase als bei 555 nm (grünes Licht, vgl. Tab. 2) und das Melatonin war zweimal so stark unterdrückt (Pauley 2004). Bsp.: Bei der Beleuchtung mit monochromatischem rotem Licht der Beleuchtungsstärke 100 lx (Zimmerbeleuchtung) war die Melatonin-Produktion nach 403 h um 50 % unterdrückt, bei einer Kerze nach 66 min, bei einer 60 W Glühbirne nach 39 min, bei 58 W Delux Tageslicht-Fluoreszenzlicht nach 15 min und bei einer reinen Weisslicht-Lampe LED nach 13 min (Pauley 2004).
Tab 3 A) Lichtintensität von Lampentypen (gelb = mässige, rot = höchste Intensität) und B) Empfindlichkeit von Tieren auf Lichtspektrum

A)

<table>
<thead>
<tr>
<th>Lampentyp</th>
<th>Lichtintensität</th>
<th>Schwanowski</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST = Natriumdampf-Niederdrucklampe 590 nm</td>
<td>monochromatisches Licht</td>
<td></td>
</tr>
<tr>
<td>HST oder HSE = Natriumdampf-Hochdrucklampe 570–630 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HME = Quecksilberdampf-Hochdrucklampe 320–720 nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B)

<table>
<thead>
<tr>
<th>Wellenlänge (nm)</th>
<th>Attraktivität für verschiedene Insektengruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Lichtgrösster Attraktivität für Wasserinsekten, Meniscus, Melanopsin empfindlich bei 437 nm</td>
</tr>
<tr>
<td>450</td>
<td>Lichtkleinstes Attraktivität für Wasserinsekten, Melanopsin empfindlich bei 464 nm</td>
</tr>
<tr>
<td>500</td>
<td>Lichtgrösster Attraktivität für Glühwürmchen, Lampyris-Männchen</td>
</tr>
<tr>
<td>550</td>
<td>Lichtkleinstes Attraktivität für Glühwürmchen, Lampyris-Männchen</td>
</tr>
</tbody>
</table>

Grundlagenbericht Lichtimmission, 13. März 2007, SWILD Zürich
Effekte von Licht auf Pflanzen

Allgemeine Bedeutung von Tageslicht für Pflanzen

Pflanzen passen sich mit ihrem Stoffwechsel, in ihrer Entwicklung und in ihrer Ausgestaltung an die vorherrschende Quantität und Qualität des Strahlungsangebotes auf ihrem Wuchsplatz an:
- modulativ, d. h. rasch und vorübergehend, beispielsweise bei Blattbewegung,
- modifikativ, d. h. an die durchschnittlichen Strahlungsbedingungen während des Heranwachsens, wobei die Ausprägungsform beibehalten wird,
- evolutiv: diese Anpassungen an das Strahlungsangebot sind genotypisch verankert und bedingen die oft auffälligen Unterschiede in der Verbreitungskunde verschiedener Pflanzenarten und Ökotypen.

Tageszeitlicher Rhythmus im Naturtag
Der tageszeitliche Hell-Dunkel-Wechsel beeinflusst das Verhalten der Pflanzen: Die Atmungsaktivität, die Permeabilitätseigenschaften des Protoplasmas, der zelluläre und der organismische Stofftransport lassen eine tageszeitliche (diurnale) Rhythmik erkennen, Wachstumsvorgänge werden durch den tageszeitlichen Photoperiodismus induziert oder gesteuert (z. B. Blatt- und Blütenbewegungen). Im künstlichen Dauerlicht (24 h) erlahmt das Photosynthesevermögen bei manchen Arten.
Tageslänge löst Blütenbildung aus
Bei vielen Pflanzen wird die Blütenbildung bei einer bestimmten kritischen Tageslänge ausgelöst. Es lassen sich prinzipiell drei Typen mit unterschiedlichem Tageslängenbedürfnis unterscheiden:

- Langtag-Pflanzen LTP (z. B. Rettich Raphanus sativus, Spinat Spinacia oleracea) blühen, wenn eine bestimmte, artspezifische, kritische Tageslänge überschritten wird (z. B. >12 h). Beim Unterschreiten der kritischen Tageslänge bleiben sie vegetativ. LTP, die im Kurztag vegetativ bleiben würden, werden durch einstündiges Störlicht in der Mitte der Dunkelperiode zur optimalen Blütenbildung angeregt.
- Bei tagneutralen Pflanzen (z. B. bei Bohne Phaseolus vulgaris, Mais Zea mays) erfolgt die Blühinduktion unabhängig von der Tageslänge.

Neben der Tageslänge spielt die Temperatur bei der Blühinduktion eine entscheidende Rolle. Im Extremfall können Pflanzen wie z. B. Wolfsmilch Euphorbia (KTP) bei niedrigen Temperaturen im Langtag, bei hohen im Kurztag blühen.

Anpassung an die Tageslänge der geografischen Breite
Die Tageslänge schwankt in Abhängigkeit von der geografischen Breite. Diesen unterschiedlichen Tageslängen haben sich viele Pflanzenarten in ihrem photoperiodischen Blühverhalten im Laufe der Evolution angepasst. So gibt es am Äquator überwiegend KTP, während in geografischen Breiten oberhalb von 60° Nord oder Süd überwiegend LTP zu finden sind. Einige Kulturvarietäten der Sojabohne sind sogar so stark auf eine bestimmte Tageslänge fixiert, dass sie nur innerhalb einer Zone von ca. 80 km Breite optimal wachsen.

Reaktion auf Lichtspectrum
Pflanzen können sich an die spektrale Zusammensetzung des Lichts anpassen, indem sie ihre Farbstoffe in den Zellen verändern, was pflanzenbaulich, etwa bei der Anzucht unter Kunstlichtbedingungen, von grossem Vorteil sein kann.

Aktionsspektren, die bei Versuchen für die Störlichtempfindlichkeit während der Dunkelperiode aufgenommen wurden, zeigen, dass sowohl die Blühverhinderung bei den KTP als auch die Blühinduktion bei den LTP dieselben Wirkungsgipfel im orangefarbenen und blauen Wellenlängenbereich (620 nm, bzw. 480 nm) aufweisen, wobei orangenes Licht weitaus wirksamer ist als blaues Licht. Die Wirkung des orangen Störlichtes ist allerdings bei KTP und LTP entgegengesetzt.
Photorezeptoren reagieren auf Umgebungslicht

Auswirkung von künstlicher Nachtbeleuchtung noch unerforscht

Effekte von Licht auf Tiere
In diesem Kapitel werden Effekte von Licht allgemein (Tageslicht und Mondlicht im Naturtag) auf Tiere dargestellt, die für eventuelle Auswirkungen von künstlicher Beleuchtung in der Nacht entscheidend sein könnten.

Artspezifische Phototaxis
Photoperiodische Effekte auf Insekten

Bei Insekten, beispielsweise bei *Drosophila melanogaster*, steuert die Photoperiode, d.h. die Tageslänge, die Schlüpfzyklen (Häder 2004). Bsp.: Durch die Tageslänge reguliert sind auch die Frühjahrs- und Sommerformen des Landkärtchens *Araschnia levana*. Frühjahrsformen mit heller Flügelzeichnung entwickeln sich aus Raupen unter Kurztagbedingungen (weniger als 14 h), Sommerformen mit dunklen Flügeln hingegen im Langtag von mehr als 16 h Dauer (Häder 2004). Bsp.: Bei den Zwergzikaden gibt es Saisonformen, die nicht nur durch ihre Färbung, sondern auch im Bau der Fortpflanzungsgänge verschieden sind (Häder 2004). Bei Insekten findet man wie bei einigen Pflanzen auch Anpassungen an die geografisch bedingte Tageslänge. Bsp.: Die nördlichsten Stämme *Drosophila littoralis* aus Nordfinnland haben mit 19 h eine weitaus längere kritische Tageslänge für die Auslösung der Diapause (Winterruhe) als Stämme aus dem Kaukasus mit 12 h kritischer Tageslänge (Häder 2004).

Mondlicht steuert Entwicklungszyklen von Zuckmücken

Außer den durch Tageslicht gesteuerten Rhythmen gibt es im Tierreich auch Entwicklungsabläufe, die durch Mondlicht reguliert werden, wie die Brutzyklen verschiedener Insekten. Bsp.: Bei der Zuckmücke *Clunio marinus* lassen sich durch schwache Beleuchtung mit 0.5 lx (vgl. Tab. 1) experimentell rhythmische Schlüpfaktivitäten auslösen (Häder 2004).

Lichtabhängige Vertikalwanderung des Zooplanktons

Das Zooplankton in Seen bewegt sich im 24-h-Rhythmus in der Wassersäule auf und nieder, was auch als tägliche Vertikalwanderung bezeichnet wird. Vermutlich zur Feindvermeidung steigt ein großer Teil des Zooplanktons nur während dunklen Bedingungen in die Nähe der Wasseroberfläche, um Nahrung (Algen) aufzunehmen. Halbdämmerung wie Halbmond (< 10 – 1 lx, vgl. Tab. 1) reicht aus, um die vertikale Verteilung dieser aquatischen Invertebraten zu beeinflussen. Das Muster der Vertikalwanderung ändert sich denn auch mit dem Mondzyklus (Moore et al. 2000).

Photoperiodische Effekte auf Schnecken

Lichtempfindliches Hirnorgan bei Echsen
Bsp. Bei Eidechsen konnte gezeigt werden, dass die lokomotorische Aktivität, die Keimdrüsentätigkeit und der Farbwechsel allein durch das lichtempfindliche Pinealorgan (Epiphyse im Gehirn) gesteuert werden (Häder 2004).

Lichtdurchlässige Schädeldecke bei Vögeln
Bei Vögeln reicht die Lichtdurchlässigkeit der Schädeldecke aus, um im Gehirnbereich, vermutlich in der Epiphyse, Helligkeitsunterschiede von 10 lx zu registrieren (vgl. Tab. 1). Bei Dauerlicht reagieren tagaktive Vögel auf die Lichtintensität: Bei grösserer Helligkeit nimmt die Periodenlänge ab, d. h. der normale circadiane Rhythmus wird kürzer (Häder 2004).

Lichteinfluss auf Melatonin-Produktion bei Säugetieren
Der Einfluss von Licht auf die Melatonin-Produktion und das circadiane System bei Säugetieren wird im nachfolgenden Kapitel in den Unterkapiteln Säugetiere und Mensch ausführlich behandelt.

Auswirkungen von künstlichem Nachtlicht auf Tiere und den Menschen

Die allgemein gehaltenen Formulierungen im Text werden im Anschluss an die Aussage soweit vorhanden durch Beispiele veranschaulicht, welche entsprechend gekennzeichnet sind (Bsp.). Die einzelnen Beispiele werden nicht kommentiert. Für die allgemeinen Folgerungen sei auf das Kapitel Folgerungen aus den Literaturgrundlagen, S. 41 verwiesen.
Invertebraten (Wirbellose)

Anziehung von Fluginsekten

Anlockwirkung auf Wasserinsekten

Mechanismus der Anlockwirkung von Insekten und Konsequenzen

Anziehung und Meidung bei Spinnen

Veränderung der Vertikalwanderung von Wasserflöhen

Kommunikation bei Glühwürmchen

Fische
Lichtabhängigkeit der Reproduktion
Aktivitätsänderungen

Künstliche Beleuchtung als Leitsignal

Anziehung von Feinden
Amphibien

Blendung – Anziehung – Vermeidung von Licht

Verändertes Fortpflanzungsverhalten

Innerartliche Verhaltensinteraktionen werden bei nachtaktiven und territorialen Salamandern vom Belichtungsgrad beeinflusst (Wise & Buchanan 2002). Bsp.: Experimente haben gezeigt, dass Salamander mehr Imponierverhalten zeigen, je mehr Licht vorhanden ist.

Reptilien

Desorientierung von Meeresschildkröten

sie rasch zum Ozean. Mit der intensiven Strandbeleuchtung ändern sich die Beleuchtungsverhältnisse, was Desorientierung der geschlüpften Schildkröten zur Folge hat (Salmon et al. 1995, Salmon & Witherington 1995).

Aktivitätsanpassung – Beutefang – Risiko

Vögel
Lichtregime beeinflusst Reproduktion bei Hühnern

Kombination von Licht und Nebel als Gefahr für Zugvögel – Mechanismus
bestimmte Lichtschwelle gelangen. Bsp.: Als bei einem Fernsehturm die Beleuchtung versuchsweise kurzfristig abgeschaltet wurde, zerstreuten sich die Vögel, die den Turm umflogen, innerhalb weniger Minuten (Cochran et al. 1958).

Zugvögel im Lichtdom über Agglomerationen

Zugvögel in der Lichtsphäre von kleineren beleuchteten Arealen

Towerkill

Untersuchungen haben gezeigt, dass die Anzahl der Vögel, die sich bei entsprechendem Wetter nahe der beleuchteten Türme aufhält, sowie das Flugverhalten mit der Art der Warnlichter zusammenhängen (Gauthreaux & Belser 2002). Bsp.: Bei konstantem rotem Licht wurden mehr Vögel in der Nähe des Lichts beobachtet als bei sich rasch bewegendem weissem Licht, wo sie nicht häufiger waren als auf einem Kontrollareal ohne Turm. Bsp.: Als bei sechs Abluftkaminen eines Elektrizitätswerks das Scheinwerferlicht zur Flugsicherung mit schnell blinkendem Licht ersetzt wurde, verminderte sich die Kollision von Vögeln dramatisch (Science A Go Go 1999).

Kollision mit erleuchteten Wolkenkratzern

Fehlgeleitete Meeresvögel

Reaktion auf plötzliche Lichtreize

Vogelgesang zu Unzeiten

Strassenlicht und Nestdichte bzw. Brutbeginn von Uferschnepfen
Bsp.: Eine Untersuchung in einem offenen Feuchtgebiet mit einer stark befahrenen Strasse unter beleuchteten und unbeleuchteten Bedingungen ergab, dass die Nestdichte von Uferschnepfen Limosa L. limosa bei Beleuchtung der Strasse von der Entfernung zur Strasse abhing und in der Nähe der Strasse (bis zu 300 m) kleiner war als weiter weg (De Molenaar et al. 2000). Zudem wurde in der Nähe der beleuchteten Strasse ein späterer Brutbeginn beobachtet.
Schlafplätze im Schutze des Lichts?

Säugetiere
(Mensch siehe nächstes Kapitel, S. 36)

Künftliches Nachtllicht und innere Uhr

Lichtregime und Melatonin in der Tierproduktion
Der Einfluss des Lichts und des Hormons Melatonin auf die Reproduktion macht man sich in der Tierindustrie zu Nutze:

Bsp.: Beim Ziegenbock kann ähnlich wie beim Schafbock durch ein entsprechendes Lichtregime eine hohe Spermaproduktion von guter Qualität über mehr als 3 aufeinander folgende Jahre erreicht werden (Chemineau et al. 1996).

Lichtscheu

Bsp.: Beim Schloss Hallwil nutzen Zwerg- und Wasserfledermäuse für die Jagd nur die dunklen, nicht aber erhellten Bereiche des Schlossgrabens und des vorbeifließenden Baches (Beck 2005).

Fassadenbeleuchtung – eine Bedrohung für Fledermäuse?
Verschiedene Fledermausarten versammeln sich im Sommerhalbjahr zur Fortpflanzung in Estrichen von Gebäuden, die als Fledermausquartiere bezeichnet werden. Diese Arten zeigen eine grosse Empfindlichkeit auf Licht in der Nähe ihres Quartiers, was vermutlich mit der Feindvermeidung zusammenhängt.

Attraktion durch Beuteansammlung?

Blendung und ihre Auswirkungen
Nachtaktive Säugetiere haben unter anderem grosse Pupillen, welche mehr Licht durchtreten lassen und eine stäbchenreiche oder sogar beinahe zäpfchenfreie Retina (Fledermäuse). Das Stäbchensystem ist hoch sensitiv, d. h. reagiert auf relativ wenige Photonen. Die Fähigkeit, scharf zu sehen, ist jedoch gering. Nachtaktive Säugetiere werden durch helles Licht stark geblendet, da die Stäbchen schon bei Dämmerlicht nicht mehr reagieren, d. h. bereits schon angeregt sind. Während die Helladaptation nach lediglich einigen Sekunden erreicht ist, dauert die Dunkeladaptation 10–40 min (Beier in Rich & Longcore 2006).

Menschen

Die folgende Zusammenfassung beschränkt sich auf Auswirkungen von künstlichem Nachtlicht im Zusammenhang mit der circadianen Uhr, die Angaben stützen sich auf Pauley (2004).

Alle Organismen verfügen über eine innere Uhr, welche die physiologischen Vorgänge diktiert und beispielsweise vorgibt, wach zu sein, respektive zu schlafen. Dieses interne Programm ist genetisch festgelegt und neuronal fest verschaltet. Damit die innere Uhr auf den 24-h-Rhythmus (circadianer Rhythmus) synchronisiert werden kann, ist sie vom Rhythmus des Naturtages abhängig, den dunklen Nächten und dem Tageslicht. Die circadiane Uhr reagiert äußerst sensitiv auf die Dunkel-Hell-Zyklen und wird bei den Säugetieren durch Photonen in Gang gebracht, welche auf spezialisierte Zellen in der Netzhaut des Auges treffen.

Rezeptorzellen für die biologische Uhr

Blaues Licht in der Nacht und Melatonin-Produktion

Melatonin reguiliert und schützt

Melatonin und Krebs im Tierversuch

Experimente bei nachtaktiven Ratten haben gezeigt, dass der nächtliche Melatoninspiegel bei Dauerlicht reduziert und die Wachstumsrate von implantierten Lebertumorzellen erhöht ist. Sogar weisses Dämmerlicht von nur 0.2 lx reicht aus, um Melatonin zu unterdrücken. Das Wachstum der Lebertumorzellen war bei dieser Beleuchtungsstärke ähnlich wie bei weissem Licht von 300 lx (vgl. Tab. 1). Dies zeigt, wie hochsensibel das circadiane System bei Ratten ist, das durch Licht auf der Netzhaut in Gang gesetzt wird.
In anderen Experimenten wurden Ratten menschliche Brustkrebszellen implantiert. Bei Ratten, die im Dauerlicht bei 300 lx gehalten wurden, nahmen die Krebszellen mehr Fettsäure (*Linoleic acid*) auf und wuchsen schneller als bei Ratten in normaler Licht-Dunkel-Umgebung. Bei einer Zugabe von Melatonin verlangsamte sich die Wachstumsrate des Krebses bei diesen Tierversuchen mit Brust- bzw. Lebertumorzystellen um 70%, und es wurde weniger Fettsäure aufgenommen, was die krebsstatistische Eigenchaft von Melatonin bestätigt.

Nachtlicht und menschliche Gesundheit

Mechanismus der Schutzwirkung von Melatonin

Als Ursache für die heute größere Rate bei Brust- und Darmkrebs in Industrieländern wird folgende Hypothese postuliert: Ist das Auge am frühen Morgen Licht mit blauer Wellenlänge in normaler Beleuchtungsstärke ausgesetzt, wird die Melatoninproduktion unterdrückt, was in Kombination mit fettreicher Ernährung zu einer höheren Rate von Brust- und Darmkrebs führt.

Auswirkungen von künstlichem Nachtlicht auf Lebensgemeinschaften

Die Verhaltensweisen, die Tierindividuen auf künstliches Nachtlicht zeigen, können auch die Interaktion zwischen Tierarten einer Lebensgemeinschaft beeinflussen, beispielsweise die Konkurrenz oder das Räuber-Beute-Verhalten.

Zwischenartliche Konkurrenz

Nischendifferenzierung und Diversität bei künstlichem Nachtlicht

Begünstigung von Fledermausarten durch Strassenbeleuchtung

Räuber-Beute-Verhalten

Vorteil und Nachteil von künstlichem Nachtlicht

Lichtbeeinflusste Beuteansammlung zieht Feinde an

Bsp.: Seehunde wurden beobachtet, die sich auf ihrer Migration flussabwärts unter künstlicher Beleuchtung zusammenfanden, um junge Lachse zu fressen. Wurde das Licht ausgeschaltet, sank der Jagderfolg (Yurk & Trites 2000). Unter Licht versammelte Fische sind auch für andere Raubfeinde (z. B. Raubfische) eine Attraktion.
Feinderkennung durch künstliches Licht verunmöglicht

Folgerungen aus den Literaturgrundlagen
Alle Organismen haben sich in ihrer Evolution mit ähnlichen Mechanismen dem Tag-Nacht-Wechsel angepasst. Es ist deshalb zu erwarten, dass eine Änderung des Tag-Nacht-Rhythmus und künstliche Nachtbeleuchtung nicht ohne Folgen für die Organismen bleibt.

Lichtinduzierte Vorgänge bei den Pflanzen und die Wirkung von Licht auf unterschiedliche Tierarten wurden auf experimentellem Weg untersucht (Photobiologie). Die Auswirkungen von künstlicher Nachtbeleuchtung im Naturtag sind allerdings noch kaum erforscht. Um zu einer Beurteilung über eventuell negative Auswirkungen zu kommen, muss daher vor allem auf experimentelle Untersuchungen oder auf augenfällige Ereignisse zurückgegriffen werden (Towerkill etc.). In der medizinischen Forschung zeigen experimentelle Untersuchungen an Tieren und Untersuchungen von Nachtarbeitenden, dass die Wirkung von Nachtlicht auf den Menschen nicht zu verharmlosen ist.

Auswirkungen von künstlichem Nachtlicht auf Pflanzen

Auswirkungen von künstlichem Nachtlicht auf Tiere
Lichtinduzierte Verhaltensänderungen können sich für Tiere positiv oder negativ auswirken. So ist die Verhaltensanpassung für die einen Tierarten ein Vorteil, kann aber gerade dadurch für andere zu einem Mortalitätsrisiko werden (Konkurrenz, Räuber-Beute-Verhalten) oder sie bietet für eine Tierart einerseits einen Vorteil, birgt aber andererseits auch ein Risiko (Nahrungsaufnahme – Auffälligkeit für Fressfeind). Über die Fitness von Tieren mit lichtinduzierten Verhaltensänderungen ist nichts bekannt.

Auswirkungen von künstlichem Nachtlicht auf Lebensgemeinschaften und bedrohte Arten

Künstliche Beleuchtung könnte auch die interspezifische Konkurrenz und die Räuber-Beute-Beziehungen verändern, was wiederum Auswirkungen auf die Struktur der Lebensgemeinschaft haben könnte.

Wenn eine grosse Anzahl von Tieren durch Lichteinflüsse umkommt, ist es schwierig zu beurteilen, wie schwer wiegend sich dies für die ganze Population der Tierart auswirkt. Der Zeitpunkt des Todes im Reproduktionszyklus sowie die Populationsgrösse sind Faktoren, die dabei berücksichtigt werden müssen.

Barriereeffekt von künstlichem Nachtlicht

Befürchtet wird ein Barriereeffekt durch die langen linearen Beleuchtungsstrukturen entlang einer Strasse. Beim Abstand der Leuchten von 30 bis 50 Metern kann eine beleuchtete Strasse beispielsweise für viele nachtaktiven Insekten eine Barriere darstellen, die kaum überwunden werden kann. Über die Auswirkungen dieser Lebensraumzerschneidung auf die Insektenfauna fehlen bisher Untersuchungen (Scheibe 1999).
Ökosystem-Effekt von künstlichem Nachtlicht

Einfluss von Beleuchtungsstärke

Einfluss von Licht unterschiedlicher Wellenlänge

Die Wellenlänge von ausgestrahltem künstlichem Licht scheint für die Auswirkungen auf Tiere und Menschen ein wesentlicher Faktor zu sein (vgl. Tab. 3). Unterschieden werden muss zwischen Auswirkungen von Licht im Zusammenhang mit der Melatonin-Produktion, die für Menschen und viele Tiere gleichermassen gelten, und den übrigen Auswirkungen.

Für die nächtliche Melatonin-Produktion des Menschen ist Licht blauer Wellenlänge zwischen 464 und 484 nm der entscheidende Störfaktor und kann entsprechend negative Auswirkungen haben. So genannt weisses Licht enthält Licht des ganzen sichtbaren Spektrums, also auch Licht von blauer Wellenlänge. Die heutigen modernen Beleuchtungskörper mit weissem Licht setzen die Menschen immer mehr Licht mit blauer Wellenlänge auS. Die nächtliche Beleuchtung mit Lichtquellen, welche blaues Licht ent
halten, kann bei offenen Augen ein potenzielles Gesundheitsrisiko darstellen. Es ist zu
vermuten, dass ähnliche gesundheitliche Risiken von weissem Licht mit blauem Wellen-
anteil auch für die meisten Tierarten gelten.

Beim Anlockeffekt durch Licht zeigt sich, dass UV-Licht und Licht im blauen Wellenbe-
reich im Allgemeinen grössere Auswirkungen auf Insekten haben, dass es aber auch
Arten gibt, die am stärksten von Wellenlängen im gelbrünen oder gelborangen Bereich
angezogen werden. So bietet das gelborange Licht von Natriumdampf-Hochdrucklam-
pen der Wellenlänge von 570–630 nm beispielsweise keinen hinreichenden Minde-
rungeffekt in aquatischen Ökosystemen.

In Abwägung der oben geschilderten potentiellen negativen Auswirkungen möge fol-
gender Grundsatz gelten: Je geringer der Blau- und Ultraviolett-Anteil am Spektrum
des ausgestrahlten Lichts, desto kleiner sind im Allgemeinen die negativen Auswir-
kungen auf die Organismen.
In diesem Kapitel werden die Auswirkungen von künstlichem Nachtlicht bezüglich verschiedener Objekte im Siedlungsraum diskutiert und einer Beurteilung unterzogen. Daraus abgeleitete Richtlinien und Empfehlungen für einen umweltverträglichen Umgang mit künstlicher Beleuchtung in Lebensräumen oder von Objekten folgen im Kapitel *Grundsätze und Empfehlungen*. Für die Beurteilung wird folgende Unterteilung vorgenommen:

- Naturnahe Lebensräume
- Hochhäuser, Hochkamine
- Gebäude und Einzelobjekte
- Brücken
- Skybeamer, Laseranlagen
- Strassen als lineare Lichtelemente

Naturnahe Lebensräume

Naturschutzgebiete, Gebiete am Siedlungsrand und an Waldrändern sowie naturnahe Siedlungsgebiete, die verschiedene Lebensraumelemente wie Naturwiese, Feuchtgebiet, spärlich bewachsene Kiesfläche, Hecke, See, Fluss, Bach etc. enthalten, werden im Folgenden unter «naturnahe Räume» zusammengefasst. Sie sind ökologisch besonders wertvoll, da sie einen grösseren Artenreichtum aufweisen als andere Gebiete und die letzten Refugien für seltenere Arten im Siedlungsraum oder in Siedlungsnähe sind.

Auswirkungen von künstlichem Nachtlicht

Die Fernwirkung einer einzelnen Lichtquelle wächst mit der Grösse des Raums, aus dem die Lampe als deutlicher Lichtpunkt im Kontrast zur Umgebung für die Insekten zu erkennen ist. Es ist daher anzunehmen, dass die Wirkung von Licht in naturnahen Räumen im Allgemeinen grösser ist als mitten im Siedlungsbereich.

Künstliche Lichtquellen in Hanglagen sind von grösserer Attraktivität als Leuchten, die in flachem Gelände stehen, unabhängig von der Einsehbarkeit des Lichts, was als so genannter «Hill-Topping»-Effekt von Schmetterlingen *Lepidoptera* bekannt ist (in Scheibe 2000).

Beurteilung

Gesetzliche Grundlagen für eine umweltverträgliche Beleuchtungspraxis bei naturnahen Gebieten bestehen in vielfältiger Form (vgl. Anhang, S. 76).

Hochhäuser, Hochkamine

Unter diesem Kapitel wird lediglich die Auswirkung auf Vögel im Zusammenhang mit künstlicher Beleuchtung an oder in diesen Objekten ausgeführt, da die unmittelbaren Effekte auf diese Tiere am besten belegt sind. Es muss allerdings davon ausgegangen werden, dass die nächtliche Innen- oder Aussenbeleuchtung in herausragenden Hochhäusern zu dekorativen oder Werbezwecken im Sommer auch hochgradige Anlockfällen für hochfliegende Insekten wie Nachtfalter sind (Scheibe 2000).
Auswirkungen beleuchteter Hochhäuser und Vogeltod

Auswirkungen beleuchteter Hochkamine und Vogeltod

Nachtzug von Vögeln im schweizerischen Mittelland

Beurteilung

Hochkamine überschreiten bei uns wie Fernmeldeturme oder Windkraftanlagen ebenfalls selten 100 Meter, was jedoch nicht hindert, dass sie zu Todesfällen für Vögel werden können, wenn sie entsprechend beleuchtet sind und bestimmte meteorologische Verhältnisse herrschen (vgl. oben und Kapitel Towerkill, S. 30).

Es ist anzunehmen, dass die potentielle Auswirkung von angestrahlten und erleuchteten hohen Strukturen auf Vögel im Herbst am grössten ist (Vogelzug, Nebel).
Gebäude, Einzelobjekte

Unter diesem Kapitel ist der Fokus auf öffentliche Gebäude und Einzelobjekte gerichtet, historisch interessante Bauwerke oder Stätten (z. B. Denkmäler), die als Wahrzeichen einer Stadt angeleuchtet oder sonst zu dekorativen Zwecken von innen oder aussen beleuchtet werden. Für nicht öffentliche angeleuchtete Gebäude oder grosse Leuchtreklamen gilt selbstverständlich Ähnliches.

Auswirkungen angestrahlter oder beleuchteter Gebäude

Beurteilung
Für die Auswirkung der Beleuchtung von Gebäuden und Einzelobjekten ist die Art der Anstrahlung massgeblich. Anstrahlung mit starkem weissem Scheinwerferlicht aus Distanz (Flutlicht) hat eine unvergleichlich stärkere Auswirkung als dezente Anstrahlung direkt am Objekt. Die Beleuchtung von Gebäuden und Einzelobjekten wird nachfolgend im Zusammenhang mit den Tierklassen diskutiert, für welche sie sich auswirken könnte.

Angeleuchtete Bauwerke können auf Insekten während des Sommers und für ziehende Vögel im Herbst Auswirkungen haben. Dabei sind verschiedene Gesichtspunkte entscheidend:

- Standort: Exponiert auf einem Hügel oder neben einer offenen Fläche wie zum Beispiel am Seeufer, am Siedlungsrand oder am Waldrand hat Beleuchtung eine größere Auswirkung als an einem niedrigen Landschaftspunkt und inmitten anderer, etwa gleich hoher Gebäude.
- Bauhöhe des beleuchteten Gebäudeteils im Vergleich zu den umliegenden Häusern: Höher als die umgebenden Gebäude hat größere Auswirkung als niedriger.

Brücken

Auswirkungen beleuchteter Brücken auf Vögel

Als Beispiel für eine dekorative künstlerische Brückenbeleuchtung sei die mächtige Vincent Thomas Bridge in Los Angeles angeführt, wo 160 Lampen mit je 360 LEDs die Konturen der Brücke (ca. 750 m lang) und die beiden Türme (ca. 100 m hoch) beleuchten (The Port of Los Angeles). Bei der Planung der Beleuchtung hatten Umweltorganisationen Einspruch erhoben, da durch ursprünglich geplantes helles Flutlicht und Licht von Skytrackern erhebliche negative Auswirkungen auf Zugvögel befürchtet wurden (The Urban Wildlands Group 2000, California Costal Commission 2003). Das Projekt wurde zur umweltverträglicheren Variante abgeändert und die Lichter werden nun nach Mitternacht gelöscht.

Auswirkungen beleuchteter Brücken auf Wasserinsekten und Fische

Beurteilung

Brücken werden je nach Grösse und Zweck zur Sicherheit von Verkehr und Passanten unterschiedlich beleuchtet. Vor allem in Innenstädten wird auch mancherorts die Konstruktion der Brücke, z. B. das Mauerwerk, angestrahlt. Es ist anzunehmen, dass jede Brückenbeleuchtung je nach Lage, Länge, Breite, Beleuchtung etc. eine andere ökologische Auswirkung haben kann.

Die Anstrahlung von Brücken zu dekorativen Zwecken sollte in Anbetracht der verstärkten Anlockung von Insekten besonders kritisch auf ihre Notwendigkeit überprüft werden.

Skybeamer, Laseranlagen

Je nach Konstruktion werden verschiedene Effekte erreicht: Mehrere drehbare Lampen verursachen rotierendes Licht und Reflektoren lenken das Licht ab. Die Leistung der Lampen kann 4000 – 7000 Watt betragen. Das Licht von Skybeamern kann bis zu 30 km weit beobachtet werden. Die Lichteffekte, die bei bestimmten meteorologischen Verhältnissen durch Reflexion an den Wolken entstehen und auf weitere Distanzen beobachtet werden können, werden manchmal als Ufos interpretiert, was schon zahlreiche Polizeieinsätze ausgelöst haben soll.

Auswirkungen von Skybeamern

Skybeamern haben ungesteuerte visuelle Effekte über beträchtliche Distanzen hinweg. Ein grosser Teil der Bevölkerung empfindet sie als Belästigung und als Lichtverschmutzung.

Verbote von Skybeamern

In der Schweiz sind zur Zeit die Gemeinden für die Bewilligung von Scheinwerferanlagen (Skybeamer, Laser) zuständig. Entsprechende Artikel des eidgenössischen Umweltschutzgesetzes und des Jagdgesetzes besagen, dass Menschen, Tiere und Pflanzen, ihre Lebensgemeinschaften und Lebensräume gegen schädliche oder lästige Einwirkungen zu schützen sind und dass im Sinne der Vorsorge Einwirkungen, die schädlich oder lästig werden könnten, frühzeitig zu begrenzen sind (genauer Wortlaut vgl. Anhang). In der Schweiz sind Skybeamers lediglich im Kanton Luzern, in Burgdorf BE und in Ormalingen BL verboten.
Beurteilung

Da bei den ausführlicheren Empfehlungen (Kapitel *Grundsätze und Empfehlungen*, S. 60) nicht mehr ausdrücklich auf den Spezialfall von Skybeamern eingegangen wird, sind die Empfehlungen betreffend Skybeamers hier angeführt. Für eine allfällige Bewilligung sollten mindestens folgende Punkte gelten:

- Die Bewilligungen von Skybeamern dürfen nur in Ausnahmefällen und nur über kurze und begrenzte Zeitdauer von einzelnen Nächten erteilt werden (Regeneration aller Organismen).
- Am Rand und ausserhalb des Siedlungsgebietes, wo empfindliche Landschaftsgebiete und Lebensräume gestört werden könnten, müssen Skybeamers und Laseranlagen verboten sein.
- In der Nähe von bedeutenden Fledermauskolonien (5 km Radius) müssen Skybeamers und Laseranlagen von Mai bis August verboten sein.
- Während der Hauptzugzeiten der Vögel in den Monaten März bis Mai und August bis November dürfen grundsätzlich keine Bewilligungen für Skybeamers erteilt werden.

Strassen als lineare Lichtelemente

Die Trenn- und Barrierewirkung wird vor allem im Zusammenhang mit Insekten und Amphibien diskutiert.
Auswirkungen von linearen Lichtelementen

Bei Amphibien (z. B. Salamander) wird ebenfalls vermutet, dass Wanderungen durch Lichteinflüsse verhindert werden könnten (Wise & Buchanan 2002), doch sind dazu kaum Untersuchungen vorhanden.

Beurteilung

Da keine Untersuchungen über die Barrieerwirkungen von linearen Lichtelementen vorliegen, ist eine Beurteilung unmöglich. Die wahrscheinlichste Barrieerwirkung durch Licht ist ausserhalb des Siedlungsbereichs zu erwarten und betrifft wohl die Insekten. Werden Strassen in solchen Gebieten beleuchtet, muss daher verstärkt auf den Einsatz von insektenfreundlichen Leuchten und Lampentypen geachtet werden.

Im Folgenden werden die Lichtqualität und Lichtquantität diskutiert und die gebräuchlichsten Lampen einer Beurteilung unterzogen. Im anschliessenden Kapitel werden Grundsätze und Empfehlungen für eine umweltverträglichere Beleuchtung im Aussenbereich formuliert. Eine Checkliste für Abklärungen zu umweltverträglichen Beleuchtungen ist am Schluss angefügt.

Lichtqualität

Kriterien zur Wahl der Lampentypen

Anforderungen an die örtlichen Verhältnisse (Normen SN der Schweizer Licht Gesellschaft SLG) sind weitere Kriterien für die Wahl des eingesetzten Lichts.

- Je geringer der Blau- und Ultraviolett-Anteil am Spektrum des ausgestrahlten Lichts, desto kleiner sind im Allgemeinen die negativen Auswirkungen auf die Organismen.
Umweltverträglichkeit verschiedener Lampentypen bezüglich ihrer spektralen Zusammensetzung

In der nachfolgenden Zusammenstellung sind vier Lampentypen nach ihrer Anlockwirkung auf Insekten in aufsteigender Reihenfolge angeführt (Schanowski 2000). Am wenigsten Anlockwirkung zeigt die rein gelbe Natriumdampf-Niederdrucklampe, am meisten die Quecksilber-Hochdrucklampe, am meist die Quecksilber-Hochdrucklampe (vgl. Tab. 3):

Natriumdampf-Niederdrucklampe (LST)

Die «LST» strahlt die gesamte Energie im Bereich von ca. 590 nm aus («Gelblichtlampe»). Einzige Lampenart, die kein Quecksilber enthält. Ihr monochromatisches Licht erschwert allerdings das Erkennen von Farben und sie wird deshalb wenig eingesetzt (Piller 2004).

Natriumdampf-Hochdrucklampe (HST oder HSE)

Leuchtstofflampe (T-Lampe) und Kompakt-Leuchtstofflampe (TC, «Energiesparlampe»)

Diese beiden Typen haben ebenfalls ein recht breites Lichtspektrum («Weisslichtlampe»), wobei die Hauptenergiemenge im grünen und orangefarbenen Bereich liegt, was auf dem Emissionsspektrum des in allen Leuchtstoffröhren enthaltenen Phosphors beruht. Im kurzwelligen Bereich wird nur wenig Energie abgestrahlt. Neuere Kompakt-Leuchtstofflampen sind dimmbar, was in Nachtzeiten mit geringer Verkehrsichte von Vorteil sein kann. Werden Betriebsdauer, Stromkosten und Wartung einbezogen, sind Leuchtstofflampen eher teuer (Piller 2004).
Quecksilberdampf-Hochdrucklampe (HME)

Über die folgenden Lampentypen sind keine Untersuchungen über die Anlockwirkung auf Insekten bekannt. Doch gilt auch da, dass Lampen mit hohem Blauanteil im Allgemeinen eine grössere Wirkung zeigen. Diese Lampentypen sind in der Stadt Zürich weniger von Belang (vgl. Tab. 5 im Anhang):

- **Glühlampe («Weisslichtlampe»)** mit Farbtemperatur um 2800 K (warmweiss, mit hohem Rotanteil). Auf die Unterdrückung der Melatonin-Produktion beim Menschen hat sie eine weniger grosse Auswirkung als Lampen mit höherem Blauanteil (vgl. Kapitel *Licht blauer Wellenlänge und Melatonin beim Menschen*).

- **Induktionslampe (QL, «Weisslichtlampe»)** ist eine elektrodenlose Leuchtstofflampe, extrem hell und hat eine optimale Lebensdauer. Induktionslampen sind erhältlich in Farbtemperaturen von 2700, 3000 und 4000 Kelvin (warmweiss – neutralweiss).

Lichtquantität

Beleuchtungsstärke

Bei Beleuchtungen zu dekorativen Zwecken fallen zwingende Anforderungen weg. Entsprechend dezent kann die Beleuchtung gewählt werden.

Leuchtdichte

Lichtlenkung
Grundsätze und Empfehlungen

Künstliche Beleuchtung im Aussenbereich ist verschiedensten sich widersprechenden Interessen ausgesetzt. Sicherheitstechnische, psychologische, ästhetische, ökonomische und ökologische Gesichtspunkte müssen bei Abklärungen zu künstlichen Beleuchtungen gegeneinander abgewogen werden.

Eine Einschränkung von Beleuchtung und Reduktion von Lichtimmissionen hat für die Menschen und die Umwelt in verschiedener Hinsicht grosse Vorteile:

Die hier zusammengestellten Grundsätze und Empfehlungen für künstliche Beleuchtung sind aus der Beurteilung ihrer Auswirkungen auf Organismen abgeleitet. Energetische, astronomische, ästhetische und psychologische Gesichtspunkte sind nicht einbezogen. Die Empfehlungen folgen im Wesentlichen einem einfachen Hauptprinzip:

«Licht soll nur zu Zeiten eingesetzt werden, wenn es gebraucht wird und nur dorthin gelangen, wo es sinnvoll ist.»

Sie sind in folgende Themen gegliedert:

– Abklärungen über Umweltverträglichkeit
– Lichtimmission allgemein vermindern (vgl. Hauptprinzip)
– Anpassung der Beleuchtung an ökologisch verschiedene Stadtgebiete
– Anpassung der Beleuchtung an die Saison
– Ökologisch verträglichste Beleuchtung einsetzen (Leuchttentyp, Leuchtmittel, Beleuchtungsstärke)
– Forschungsbedarf und Monitoring

Im Anschluss ist eine Übersicht mit den Schwerpunkten als Checkliste angefügt (Tab. 4).
Abklärungen über Umweltverträglichkeit
Vor der Neuinstallation jeder künstlichen Beleuchtung (auch bei Beleuchtungen zu Dekorations- und Reklamezwecken) am Rand oder außerhalb des Siedlungsbereichs sowie in oder nahe bei sensiblen Räumen innerhalb der Stadt (vgl. unten) muss ihre Umweltverträglichkeit überprüft werden. In diesem Sinne sollten auch die schon bestehenden Beleuchtungsanlagen in solchen Gebieten begutachtet werden, mindestens bei Ersatz der Anlagen oder bei baulichen Änderungen.

– Die Beurteilung der Umweltverträglichkeit muss vor Ort und unter Berücksichtigung von potentiellen und bekannten Arten durch biologische Fachpersonen stattfinden.
– Die bestehenden Naturschutz- und Arteninventare sind bei der Beurteilung angemessen einzubeziehen.
– Durch den Einbezug einer ökologischen Beratung bei der Planung kann die ökologische Bedeutung im Verhältnis zu anderen Interessen gewichtet werden.

Lichtimmission allgemein vermindern
Jede Beleuchtung kann im Prinzip zur Lichtimmission und zur verstärkten Lichtglocke beitragen. Entsprechend zurückhaltend sollte künstliche Beleuchtung eingesetzt werden. Als Zielsetzung sollten folgende Punkte gelten:

– Doppelbeleuchtung muss auf jeden Fall vermieden werden, ein Rückbau von überflüssigen Leuchten ist empfehlenswert.
– Zeitliche Begrenzung der Beleuchtung durch Bewegungsmelder oder Zeitschaltungen.
– Beleuchtungsstärke aufs Notwendige begrenzen: Innerhalb der Normen zur Verkehrs- und Fussgängersicherheit im öffentlichen Raum nur so stark wie wirklich nötig beleuchten.
– Berücksichtigung der ökologischen Anforderungen bei den Normen (Überarbeitung der bestehenden Normen der Schweizer Licht Gesellschaft SLGi).
Anpassung der Beleuchtung an ökologisch verschiedene Stadtgebiete

Die Auswirkung der Beleuchtung auf Organismen ist in ökologisch sensiblen (naturnahen) Räumen wie beispielsweise am Stadtrand, am Waldrand, an Gewässern, bei Feuchtgebieten oder in anderen Gebieten mit vielfältiger Tier- und Pflanzenwelt am schwer wiegendsten.

– In naturnahen Räumen und ihrem unmittelbaren Einflussbereich von 50 Metern muss jede künstliche Beleuchtung grundsätzlich in Frage gestellt und auf ihre Verträglichkeit von biologischen Fachpersonen geprüft werden (vgl. oben).

– Wo dem Schutz der Biodiversität ein hoher Stellenwert eingeräumt wird, also in und entlang von Naturräumen, dazu gehören die unverbaute Landschaft, Waldränder, die Gewässer, Feuchtgebiete sowie Naturschutzgebiete und andere naturnahe Standorte mit vielfältiger Tier- und Pflanzenwelt, sollte Beleuchtung ganz vermieden werden.

Anpassung der Beleuchtung an die Saison

– Beschränkung der Beleuchtung von Gebäuden oberhalb der Regelbauweise während der Vogelzugzeiten von März bis Mai und vom August bis November möglichst auf 22 Uhr, spätestens aber auf 24 Uhr.

– Abschalten jeder entbehrlichen Beleuchtung bei niedriger Wolkendecke, Nebel oder anhaltenden Hochnebellagen während der Monate September und Oktober (hauptsächlicher Herbstzug der Vögel).

– Beschränkung der Beleuchtung in naturnahen Lebensräumen auf die Wintermonate von Oktober bis März (Insekten, Amphibien).
– Begrenzung von Schmuckbeleuchtung (Beleuchtungen zu Dekorations- und Reklamezwecken) auf die frühen Nachtstunden bis spätestens Mitternacht (Rücksicht auf die Insekten und auf die Nachtruhe und Regeneration der Menschen in der Nachbarschaft, geringe Notwendigkeit).

Ökologisch verträglichste Beleuchtung einsetzen
Wenn nicht auf künstliche Beleuchtung verzichtet werden kann, muss wenn immer möglich die ökologisch verträglichste Beleuchtung gewählt werden. Die Beleuchtung soll dabei im Hinblick auf mögliche negative Auswirkungen auf Organismen ausgewählt und installiert werden. Dem Leuchttentyp, dem Leuchtmittel der Lampen (Lichtfarbe) und der Beleuchtungsstärke (vgl. oben) kommt in dieser Hinsicht besondere Bedeutung zu.
– Leuchten mit begrenztem Abstrahlwinkel und keinesfalls kugelige Leuchten einsetzen. Bei Anstrahlung von Objekten Leuchten sachgerecht am Objekt installieren.
– Abdichtung der Leuchten gegen das Eindringen von Insekten und Spinnen.
– Anteil an kurzwelligem Licht soll möglichst gering sein. Je geringer der Blau- und Ultraviolett-Anteil am Spektrum der Lampe, desto kleiner sind im Allgemeinen die negativen Auswirkungen auf die Organismen.

Forschungsbedarf und Monitoring
– Es besteht weiterhin ein dringender Forschungsbedarf zur Klärung der Auswirkungen und erfolgreicher Schadensbegrenzungsmassnahmen bezüglich vieler Artengruppen.
– Um die zukünftige Entwicklung der Lichtimmission zu verfolgen wird unbedingt eine Überwachung mittels geeignetem Monitoring empfohlen.
Tab. 4. Matrix: Checkliste für eine umweltverträgliche Beleuchtung

<table>
<thead>
<tr>
<th>Abklärungen zu Lichtfarbe / Beleuchtungszeit / Raum</th>
<th>Beleuchtung unterlassen (Lichtfarbe anpassen)</th>
<th>Zeitliche Begrenzung der Beleuchtung auf bestimmte Jahreszeit</th>
<th>Erläuterungen zu den Empfehlungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturräume: Dazu gehören die unverbaute Landschaft, Waldränder, die Gewässer, Feuchtgebiete sowie Naturschutzgebiete und andere naturnahe Standorte mit vielfältiger Tier- und Pflanzenwelt</td>
<td>○</td>
<td>○</td>
<td>In sensiblen Landschaftsräumen ist auf die Beleuchtung von Bauwerken und Strukturen zu ästhetischen oder Reklamezwecken zu verzichten. Nutzbeleuchtungen (für Arbeit und Sicherheit) müssen bezüglich Umweltverträglichkeit optimiert sein (d.h. möglichst zielgerichtet und mit angepasster Lichtintensität und Lichtfarbe).</td>
</tr>
<tr>
<td>Gebäude, die sensible Tierarten beherbergen: Fledermäuse oder schutzwürdige am oder im Gebäude nistende Vogelarten</td>
<td>○</td>
<td>○</td>
<td>Die Beleuchtung von Fledermausquartieren oder Lichteffekte, die auf solche Quartiere fallen, müssen von Mai bis September unterlassen werden. Gebäudeteile, die schutzwürdige nistende Vögel wie Falken, Dohlen, Segler oder Schwaben beherbergen, dürfen von März bis August (je nach Art) nicht beleuchtet werden.</td>
</tr>
<tr>
<td>Sensibler Standort: Auf Hügel, neben offener Fläche, zum Beispiel Schutzzonen am Fluss- oder Seeufer, in der unverbaute Landschaft oder am Waldrand</td>
<td>○</td>
<td>○</td>
<td>Bei Bauwerken, die an sensiblen Standorten stehen, sollte wenn immer möglich von einer Beleuchtung abgesehen werden. Falls dies nicht der Fall ist, sollten die Lichtintensität und die Lichtfarbe optimiert werden und die Beleuchtung mindestens von Frühling bis Sommer ab 22 Uhr gelöscht werden.</td>
</tr>
<tr>
<td>Nicht sensibler Standort: An niedrigem Landschaftspunkt, im mittleren von Gebäuden</td>
<td>○</td>
<td>○</td>
<td>Auch in nicht sensiblen Gebieten empfiehlt es sich, die Beleuchtung von Bauwerken oder sonstigen Strukturen ab 22 Uhr, spätestens ab 24 Uhr abzuschalten, insbesondere aber bei Hochnebellagen im September und Oktober.</td>
</tr>
<tr>
<td>Übertragende Höhe des beleuchteten oder erleuchteten Bauwerks: Höher als die umgebende Gebäude</td>
<td>○</td>
<td>○</td>
<td>Bei Gebäuden mit mehr als 20 Stockwerken muss die Innenbeleuchtung zu Reklamezwecken von März bis Mai und August bis November möglichst ab 22 Uhr, spätestens ab 24 Uhr unterlassen werden. Die Nutzbeleuchtung (für Sicherheit und Arbeit) soll bezüglich der Umweltverträglichkeit optimiert werden.</td>
</tr>
<tr>
<td>Nicht übertragende Höhe des beleuchteten oder erleuchteten Bauwerks: Gleich hoch oder niedriger als umgebende Gebäude</td>
<td>○</td>
<td>○</td>
<td>Es empfiehlt sich, die Beleuchtung von Bauwerken oder sonstigen Strukturen möglichst ab 22 Uhr, spätestens ab 24 Uhr abzuschalten, insbesondere aber bei Hochnebellagen im September und Oktober.</td>
</tr>
</tbody>
</table>

Informationen, ob Naturräume, sensible Lebensräume oder Arten betroffen sind, und generell Auskünfte zur ökologischen Baubegleitung bei:
Grüner Stadt Zürich, Fachstelle Naturschutz, Telefon 044 412 46 22

Grundlagenbericht Lichtimmission, 13. März 2007, SWILD Zürich

Kotler B. P. (1984):

Kousky, C. (2004):

Kräßli, H., SSF (2005):

Le Corre, M., Ollivier, A. et al. (2002):

Where are the lightningbugs? Fireflyer Companion 1: S. 1, 2, 5, 10. http://firefly.ifas.ufl.edu/ffcomp1-1.pdf (21. Okt. 05).

Löfken, J. O. (2005):
Leuchtdioden erobern die Strasse. wissenschaft.de, Konradin Relations GmbH.

Maisse, G., Breton, B. (1996):

Manville, A. M., II. (2000):

Moore, M. V., Kohler, S. J. (2002):

Phototactic behaviour of nocturnal and diurnal spiders: negative and positive phototaxeS. Zool. Sci. 14:
199 – 203.

Nemeth, R. S., Anderson, J. J. (1992):
Response of juvenile coho and chinook salmon to strobe and mercury vapor lightS.

New York City Audubon (2006):

Artificial night-lighting effects on salmon and other fishes in the Northwest (abstract).
The Urban Wildlands Group and Ecological consequenses of artificial night lighting (conference).

Ogden, L. J. E. (1996):
Collision Course: The hazards of lighted structures and windows to migrating birdS. A special report for
World Wildlife Fund Canada and the Fatal Light Awareness Program.

Pauley, S. M. (2004):
Lighting for the human circadian clock: recent research indicates that lighting has become a public health

Ecology behavior and color variation of the green tree skink, Lamprolepis smaragdina (Lacertilla: Scincidae),

Piller, S. (2004):
EnLight. EU-Projekt. Zwischenbericht. 48 S.

Artificial lighting and the decline of seabirds (abstract). The Urban Wildlands Group and Ecological
consequences of artificial night lighting (conference).

Reed, J. R., Sincock, J. L. et al. (1985):
Light attraction in endangered procellariiform birds: Reduction by shielding upward radiation.

Ecological Consequences of Artificial Night Lighting. Island Press, Washington. 329 S.

The Urban Wildlands Group Ecological Consequences of Artificial Night lighting. (conference).

Salmon, M., Tolbert, M. G. et al. (1995):
Behavior of loggerhead sea turtles on an urban beach. II. Hatchling orientation.

Salmon, M., Tolbert, M. G., Painter, D.P. et al. (1995):
Behavior of loggerhead sea turtles on an urban each. II. Hatchling orientation. J. Herpetol. 29: 568 – 76.

Sauveur, B. (1996):

Schanowski, A. (2000?):
Aktiv für umweltgerechte Beleuchtung. Institut für Landschaftsökologie in Bühl.

Scheibe, M. A. (2003):

Scheibe, A. M. (2000):

Scheibe, M. A. (1999):

Schweizerische Vogelwarte Sempach (?):
Störung nächtlich ziehender Vögel durch künstliche Lichtquellen (Behördebrief).

Schweizerische Vogelwarte Sempach (2004):
Medienmitteilung vom 15. Oktober 2004: Hochnebel als Gefahr für die Zugvögel.

Science A Go Go (1999):

Scottish Anglers National Association (1998):
Light Nuisance – Stonehaven Case.

Strassmann, B. (2002):

Grundlagenbericht: Ökologische Auswirkungen künstlicher Beleuchtung

Tages-Anzeiger Online (2005):

The Field Museum (2002):

The Port of Los Angeles:
Vincent Thomas Bridge Lighting Statistics.

The Urban Wildlands Group (2002):
Ecological Consequences of Artificial Night Lighting. Bibliography.
http://www.urbanwildlands.org/nightlightbiblio.html (22. Okt. 05).

The Urban Wildlands Group (2000):
Re: Vincent Thomas Bridge Lighting, Application No. 5-00-384 (Oppose).

Theiler, A. (2004):
Unterschiedliche Ausflugszeiten bei der Kleinen Hufeisennase – Landschaftsstrukturen beeinflussen den Aufbruch zur Jagd. FMAZ 79: 4

Wiese, F. K., Montevecchi, W. A. et al. (2001):
Seabirds at risk around offshore oil platforms in the North-west Atlantic.

Wikipedia: Die freie Enzyklopädie.

The influence of artificial illumination on the nocturnal behavior and ecology of salamanders (abstract).
The Urban Wildlands Group and Ecological consequences of artificial night lighting (conference).

Wüthrich, F. (2001):
Stress für Mensch und Tier. Macht das Licht aus! natur&kosmos, 2001(2).

Experimental attempts to reduce predation by harbor seals on out-migrating juvenile salmonids.

Wieviel Licht braucht der Mensch, um leben zu können, und wieviel Dunkelheit?
vdf, Hochsch.-Verlag an der ETH. 222 S.
8 GLOSSAR

Beleuchtungsstärke
Einheit: Lux (lx), 1 lx = 1 lm/m²
Umgangssprachlich ist die Beleuchtungsstärke ein Mass für die Helligkeit, mit der z. B. eine Arbeitsfläche ausgeleuchtet wird. Die Beleuchtungsstärke wird mit dem Luxmeter gemessen (vgl. Tab. 1).

Biolumineszenz
Organismen senden Licht aus, das durch eine chemische Reaktion (Oxidation bestimmter Leuchtstoffe unter katalytischer Wirkung des Enyzms Luciferase) in den Zellen entsteht.

Candela
Candela gibt die Lichtstärke an, die von einer Lichtquelle in eine bestimmte Richtung emittiert wird. Eine Kerze strahlt in alle Raumrichtungen insgesamt eine Lichtstärke von 1 Candela (cd) ab. > Kelvin.

Circadianer Rhythmus

Diurnal
Nur bei Tag auftretend (diurnale Rhythmik: Rhythmik bei Tageslicht, diurnale Tierart: tagesaktive Tierart).

Endogen
Im Körper selbst entstanden, von innen kommend, innerlich, nicht von aussen zugführt.

Fluoreszenz

Frühling > Jahreszeiten

Herbst > Jahreszeiten
Hochdrucklampe

Hypothalamus
Teil des Zwischenhirns, Sitz von Nervenzentren für die wichtigsten Regulationsvorgänge des Organismus, Bildungsort verschiedener Hormone.

Innere Uhr
Auch physiologische oder biologische Uhr. Physiologische Zeitmessung der Tiere und Pflanzen. Da sehr viele Rhythmen mit Licht in Zusammenhang stehen, muss die innere Uhr in Verbindung mit Lichtrezeptoren stehen. Die innere Uhr läuft weitgehend unabhängig von der Temperatur. Der Sitz der inneren Uhr liegt beim Menschen im > Hypothalamus.

Jahreszeiten
Grundsätzlich sind die beschriebenen Jahreszeiten folgendermassen zusammengesetzt: Frühling (März bis Mai), Sommer (Juni bis August), Herbst (September bis November) und Winter (Dezember bis Februar). Allerdings sind artspezifisch manchmal leicht andere Grenzen gültig, weshalb bei schutzwürdigen Arten die Zeitperioden für Massnahmen von Fachleuten fallweise festgelegt werden sollten.

Kelvin
Temperatureinheit gemäss aktuellem SI Standard, die auch für die Farbtemperatur verwendet wird. Mittleres Sonnenlicht beträgt 5.500 Kelvin. Siehe auch > Candela

Kurztag/Langtag
Bestimmt durch die saisonal wechselnde Tageslänge. Unterschied kann artspezifisch variabel sein, z. B. Kurztag < 12 Stunden Tageslicht, Langtag ≥ 12 Stunden Tageslicht.

Leuchtdioden
In weissen Leuchtdioden (LED) wandelt ein Fluoreszenzfarbstoff das blaue Licht, das ein Halbleiterkristall erzeugt, in weisses Licht um.

Leuchte
Vorrichtung zur Aufnahme von künstlichen Lichtquellen (z. B. Lampen) und zur besseren Verteilung des von der Lichtquelle abgestrahlten Lichtes.
Leuchtstoffe, Leuchtmittel

Durch geeignete Mischung der Leuchtstoffe lässt sich ein grosses Spektrum an nutzbaren Lichtwellenlängen und Farbtemperaturen realisieren, wodurch das Leuchtmittel auf den jeweiligen Anwendungsfall angepasst werden kann. In Leuchtstoffröhren wird z. B. das Spektrum des Sonnenlichts (kaltweiss) oder das einer Glühlampe (warmweiss) nachgebildet. Es werden auch monochromatische Farben (rot, grün, blau, ...) und Mischfarben (violett, pink, ...) realisiert.

Leuchtstoffröhren

In Leuchtstoffröhren wird ultraviolettes Licht, das durch Gasentladung in der mit Quecksilberdampf gefüllten Röhre erzeugt wird, in sichtbares Licht umgewandelt.

Licht

Sichtbares Licht ist elektromagnetische Strahlung mit einer Wellenlänge zwischen 380 – 780 nm. Elektromagnetische Strahlung mit einer niedrigeren Wellenlänge als violett wird bis zu einer bestimmten Frequenz als Ultraviolett-Strahlung UV bezeichnet; solche mit höherer Wellenlänge als rot bis zu einer bestimmten Wellenlänge als Infrarotstrahlung IR (vgl. Tab. 2).

Lichtemission

Ausgesendetes Licht von einer bestimmten Lichtquelle (vgl. auch > Lichtimmission).

Lichtglocke, Lichtdom

Lichtimmission

Meist als «Lichtverschmutzung» bezeichnet, aus der wörtlichen Übersetzung des englischen «Light pollution». Im Übermass verbrauchtes Licht, im Allgemeinen bei künstlicher Aussenbeleuchtung, das als Störgroesse in der Umwelt und im Naturhaushalt wirksam wird. Im vorliegenden Bericht wird der Begriff «Lichtimmission» verwendet.

Lichtintensität

Mass für die Anzahl der Lichtquanten, die pro Fläche und Zeiteinheit auftreten.

Lichtspektrum

Verteilung der unterschiedlichen Wellenlängen, in die das Licht zerlegt werden kann: kurzwelliges ultraviolettes Licht, sichtbares Licht (blau, grün, gelb, rot) und langwelliges Infrarot (vgl. Tab. 2, 3).
Lichtverschmutzung
＞ Lichtimmission

Melatonin

Monochromatisches Licht
Licht einer einzigen Wellenlänge.

Photoperiodismus
Einfluss der Tageslänge (Photoperiode) auf die Entwicklung von Pflanzen und Tieren.

Photorezeptoren
Pigmentmoleküle, die Licht bzw. Strahlung im weiteren Sinne absorbieren und dadurch Stoffwechselvorgänge in Gang setzen oder chemische Umsetzungen verursachen.

Retinale Ganglionzellen RGC
Nervenzellen in der menschlichen Netzhaut ("Retinale Ganglionzellen" = RGC), die am empfindlichsten auf Licht blauer Wellenlänge reagieren.

Sommer ＞ Jahreszeiten

Winter ＞ Jahreszeiten

Zirbeldrüse
Gesetzliche Grundlagen in der Schweiz

Bundesgesetz über den Umweltschutz (vom 7.10.83, Stand Juli 96)
Art. 1 Zweck
1 Dieses Gesetz soll Menschen, Tiere und Pflanzen, ihre Lebensgemeinschaften und Lebensräume gegen schädliche oder lästige Einwirkungen schützen …
2 Im Sinne der Vorsorge sind Einwirkungen, die schädlich oder lästig werden könnten, frühzeitig zu begrenzen.

Art. 6 Information und Beratung
Die Umweltschutzfachstellen … empfehlen Massnahmen zur Verminderung der Umweltbelastung.

Art. 11 Grundsatz
1 Luftverunreinigung, Lärm, Erschütterungen und Strahlen werden durch Massnahmen bei der Quelle begrenzt (Emissionsbegrenzung).
2 Unabhängig von der bestehenden Umweltbelastung sind Emissionen im Rahmen der Vorsorge so weit zu begrenzen, als dies technisch und betrieblich möglich und wirtschaftlich tragbar ist.

Bundesgesetz über die Jagd und den Schutz wildlebender Säugetiere und Vögel (vom 20.6.86)
Art. 2
4 Die Kantone sorgen für einen ausreichenden Schutz der wildlebenden Säugetiere und Vögel vor Störungen.

Lichtimmissionen können auch in den kommunalen Bau- oder Polizeiverordnungen begrenzt werden, hier ein Beispiel aus der Stadt Zürich:

Allgemeine Polizeiverordnung der Stadt Zürich
Art. 9 Immissionen
Vermeidbare, gesundheitsschädigende oder belästigende Einwirkungen namentlich durch Erschütterungen, Staub, Russ, Rauch, Geruch, Abgase oder Lichtquellen sind verboten.
Die Abteilung Beleuchtung bei ewz stützt sich auf die Leitsätze und Normen der Schweizer Licht Gesellschaft (SLG), in denen Beleuchtungswerte sowie Form und Höhe der Kandelaber festgelegt werden.

Die Lampentypen, die in Zürich eingesetzt werden, sind in derselben Reihenfolge wie im Kapitel Umweltverträglichkeit verschiedener Lampentypen, S. 57 aufgeführt.

Tab. 5: Eingesetzte Lampen in Zürich. Die Zahlen beziehen sich auf den 1.10.2005 (ewz).

<table>
<thead>
<tr>
<th>Lampentyp</th>
<th>Stück</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Natriumdampf-Niederdrucklampe</td>
<td>3237</td>
<td>Heute ausschliesslich in Inselschutzpfosten eingesetzt.</td>
</tr>
<tr>
<td>2. Natriumdampf-Hochdrucklampe</td>
<td>29484</td>
<td>Strassenbeleuchtung (Standardleuchtmittel)</td>
</tr>
<tr>
<td>3. Leuchtstofflampe (T-Lampe)</td>
<td>10139</td>
<td>Tunnels, Unter- und Überführungen, Passagen, VBZ-Haltestellen</td>
</tr>
<tr>
<td>4. Kompakt-Leuchtstofflampe (TC-Lampe)</td>
<td>7531</td>
<td>Shop Ville, Fussgängerzonen, Dekorationen etc.</td>
</tr>
<tr>
<td>5. Quecksilberdampf-Hochdrucklampe</td>
<td>3044</td>
<td>Werden bei Neuanlagen kaum mehr verwendet; alte Anlagen werden durch andere Beleuchtungsanlagen ersetzt.</td>
</tr>
<tr>
<td>Glühlampe</td>
<td>128</td>
<td>Laternen in der Altstadt (Fussgängerzone)</td>
</tr>
<tr>
<td>Halogen-Metaldampflampe</td>
<td>950</td>
<td>Ausgewählte Plätze, Strassen (Ergänzung zu Natrium-Hochdrucklampen; helle Wirkung)</td>
</tr>
<tr>
<td>Induktionslampe (QL)</td>
<td>54</td>
<td>Schwer zugängliche Kandelaber (Lebensdauer)</td>
</tr>
<tr>
<td>Mischlicht und andere (v. a. LEDs)</td>
<td>425</td>
<td>LEDs: Anstrahlen und «Be-streichen» mit Licht, z. B. Viadukt, Brunnen, Wegweiser</td>
</tr>
<tr>
<td>Total</td>
<td>54992</td>
<td></td>
</tr>
</tbody>
</table>
Impressum

Konzept und Text:
Therese Hotz und Fabio Bontadina, SWILD Zürich

fabio.bontadina@swild.ch
www.swild.ch
Telefon 044 450 68 05

Lektorat:
Kathi Märki, SWILD Zürich

Begleitgruppe:
Stefan Hose, Grün Stadt Zürich,
Aleandra Wüst und
Maria Aström, Amt für Städtebau Zürich

Wir danken den folgenden Personen herzlich für kritische Rückmeldungen
und wertvolle Kommentare:

Stephan Bleuel, Amt für Städtebau Zürich
Sandra Gloor und Daniel Hegglin, SWILD Zürich
Christian Scherrer, TED
Karl Tschanz, Umwelt- und Gesundheitsschutz Zürich
Antonio Righetti, BAFU
Team Plan Lumière Stadt Zürich
Steuerungsgruppe Plan Lumière Stadt Zürich

Gestaltung:
Juliet Haller und
Karin Weisener, Amt für Städtebau Zürich

Grundlage für Grün Stadt Zürich
nd Amt für Städtebau Zürich

Zitatvorschlag:
Hotz, T. & Bontadina, F. 2007. Allgemeine ökologische Auswirkungen
künstlicher Beleuchtung. Unpublizierter Bericht von SWILD als Grundlage
für Grün Stadt Zürich und Amt für Städtebau Zürich. 78 Seiten.