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ABSTRACT 
Mountain ecosystems are facing various threats, notably rapid climate and land use 

changes. Knowledge about the ecology of species living at high-elevation is usually in-

sufficient to properly predict their response to the new drivers impacting their habitat. 

This represents a serious impediment to develop effective, spatially-explicit conservation 

programmes. In particular, we lack a mechanistic understanding of species-habitat rela-

tionships at multiple spatial and temporal scales. We investigated the habitat selection 

of the Alpine Ring Ouzel, a declining and threatened bird species of timberline ecosys-

tems. The main objective was to identify the factors driving both territory (home range) 

selection and variation in population density across space and time. A second, method-

ological aim was to compare the performance of field-collected vs remote-sensed data 

for developing appropriate predictive, mechanistic habitat suitability models. We mapped 

habitat characteristics (field surveys) in 47 landscape units of 1 km2 (W Swiss Alps) for 

which data about presence, population density and demographic trend were available 

from nation-wide monitoring schemes. If field-collected data better predicted territory se-

lection, population density was better predicted by either remote-sensed data alone, or 

a combination of both field and remote-sensed information. The main results were that: 

1) Ring Ouzels selected areas characterised by short and sparse ground vegetation; 2) 

open and/or steep habitat offering wet and relatively nutrient-poor soil conditions sup-

ported higher population density; 3) the proportion of pasture and unproductive land pos-

itively influenced demographic trends. From a mechanistic viewpoint, many of these fac-

tors link to the previously evidenced foraging requirements of Alpine Ring Ouzel, notably 

in terms of prey availability (abundance mediated by accessibility). Important for inform-

ing conservation, these results attest that climate and land use changes both exert an 

impact on Ring Ouzel occurrence, density and population trend. 
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INTRODUCTION  
Mountainous regions host a rich and unique biodiversity across the world, but these hab-

itats are highly threatened by diverse factors. The most commonly cited driver is climate 

change, with its known effects on range shrinkage, e.g. by impacting individual fitness or 

species interactions (La Sorte & Jetz 2010; Scridel et al. 2018). In temperate mountain 

ecosystems, land use change is also a threat, affecting habitat heterogeneity through 

the intensification of the most productive zones and the abandonment of the less acces-

sible ones (Laiolo et al. 2004; Sirami et al. 2017; Lehikoinen et al. 2019). As well, the 

increase of year-round leisure activities throughout the year put these regions at risk 

(Arlettaz et al. 2007; Patthey et al. 2008). In Europe, the Alps represent a biodiversity 

hotspot, so that alpine countries share the responsibility to conserve and manage moun-

tainous ecosystems appropriately. Within those habitats, the timberline ecotone is one 

of the most biodiversity rich, but one subject to rapid changes, primarily due to the strong 

increase in land abandonment leading to encroachment (Bolliger et al. 2007; Gehrig-

Fasel, Guisan & Zimmermann 2007; Price et al. 2015) but also due to its predicted up-

ward shift under rising temperatures (Carlson et al. 2017). Therefore, one can expect an 

evident reduction of the timberline ecotone surface at higher elevations due the moun-

tains’ pyramidal shape. Moreover, it is unlikely that whole communities will simply shift 

upwards since species-specific reactions to these drivers may differ in space and time 

(Reif & Flousek 2012; Scridel et al. 2018). Therefore, beyond predictions about broad-

scale future species distributions according to climate and land use scenarios (Maggini 

et al. 2011; Geary et al. 2015), there is a need to understand the mechanisms of species-

habitat interactions occurring at multiple scales. Such information is still largely lacking 

and it prevents to precisely define targeted management measures and their spatial pri-

ority (Arlettaz et al. 2012; Braunisch, Patthey & Arlettaz 2016).  

The Ring Ouzel (Turdus torquatus) is part of these species inhabiting mountains and 

confronted with those threats. It is declining across some parts of its breeding range, 

such as the UK (Wotton, Langston & Gregory 2002) where several studies were under-

taken (Beale et al. 2006; Sim et al. 2007), and Switzerland, where it is on the list for the 

development of a recovery programme with the highest level of priority (Keller et al. 

2010). Indeed, Switzerland, where this species has faced an important decline since the 

1990s, hosts 15% of the European breeding population (Knaus et al. 2018). This 

concerns the subspecies T.t. alpestris, that also occurs in other mountain ranges in 

central Europe, and inhabits open forests and the timberline ecotone as described by a 

few studies on its ecology (von dem Bussche et al. 2008; Ciach & Mrowiec 2013). Yet, 

no recovery programme has been formulated, so that it appears crucial to study more in 

depth the mechanisms driving its habitat selection at several scales. 
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Multi-scale studies help to understand the habitat selection processes of a species 

according to environmental factors occuring at one or several spatial or temporal scales, 

which is even more important for highly mobile species living in heterogenous habitats 

(Johnson et al. 2004), like Ring Ouzels do. Indeed, habitat selection is a hierarchical 

process that intervenes at multiple levels (Mayor et al. 2009; Apolloni et al. 2018; 

Fattebert et al. 2018). The smallest scales about foraging site and patches selection, 

respectively orders 3 and 4 following the definition of Johnson (1980), give information 

about mechanisms driving habitat selection and essential ecological needs (Brambilla et 

al. 2018). In a recent study on the Ring Ouzel, these small scales were investigated and 

revealed the high importance of prey availability driven by soil conditions, ground cover 

and vegetation structure, all showing marked seasonality patterns (Barras et al. 2019). 

Nevertheless, studies about its habitat selection at larger scales in central Europe are 

too rare to completely understand its ecology (but see von dem Bussche et al. 2008; and 

Ciach & Mrowiec 2013). At the home range scale (order 2), the individual or pair will try 

to find an habitat of the best quality for a succesful reproduction, taking into account 

various envionmental cues, such as predation pressure or food and nesting site 

availability (Coudrain, Arlettaz & Schaub 2010; Bosco et al. 2019). Understanding these 

functional species-habitat associations helps to define targeted habitat management for 

species conservation. Studying habitat selection at the largest scale (order 1) allows to 

know how a population settled across a landscape, which is useful to refine habitat 

management and particularly to prioritize it spatially (Braunisch, Patthey & Arlettaz 

2016).  

Moreover, when it comes to identifying habitat preferences of a species, it is crucial to 

choose the type of data that best fits the focus scale, either acquired from the field (FD) 

or from remote sensed methods (RSD) (Jähnig et al. 2018). Indeed, data collected in the 

field offers a better precision on environmental factors intervening at fine spatial and 

temporal scales and a good coverage of small areas but is hard to obtain on larger zones 

as it is time consuming to collect. Data extracted from remote sensed methods allows 

covering large areas, provides a better general view about landscape composition and 

can be used for predictions according to future scenarios or for spatial prioritization. 

However, there is a risk to miss some important fine-grained information. It is really val-

uable to compare FD and RSD performance at several scales to possibly identify remote 

sensed factors that can be used as good proxies for data collected in the field, and thus 

have easily accessible and area-wide data that is ecologically meaningful (Braunisch, 

Patthey & Arlettaz 2016). 

The first aim of this study was to define the Ring Ouzel’s breeding habitat preferences 

at the larger spatial scales. As a second aim, we wanted to compare the performance to 
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predict habitat selection of both FD and RSD explanatory factors, as well as the 

combination of both. At the home range scale, we thus analysed the occurrence 

probability to investigate the best predictors of habitat selection with both FD and RSD. 

At the landscape scale, we studied Ring Ouzels population density with the two types of 

data as well. We also looked for predictors of population trend, this time only with RSD.  

In the western Swiss Alps, we selected squares (1 km2) within the set of the national 

breeding birds surveys areas, from which we had species count data. In those, we 

collected habitat information in the field (FD) and extracted RSD from available 

environmental GIS layers. Finally, the general aim of the study was to shed some light 

on the reasons behind the species decline in order to define targeted management and 

spatial priority for its conservation.  

 

MATERIAL & METHODS 

Study Area 
The study was conducted in the western Swiss Alps within the Ring Ouzel’s altitudinal 

breeding range (1300-2200 m a.s.l.). This area is divided into two biogeographic regions: 

the northern Alps (including the Prealps) and the central Alps (Fig. 1). The northern Alps 

are under oceanic climatic influence with a mean temperature of -1.7°C in January and 

14.2°C in July at Adelboden (1’327 m a.s.l.) (Federal Office of Meteorology and 

Climatology 2016) with more than 1’200 mm/year of precipitation at 1000 m a.s.l. (Ott et 

al. 1997). The dominant winds come from the north and west and the subalpine forest is 

dominated by spruce (Picea abies) that co-exists with fir (Abies alba) at lower elevations 

(Ott et al. 1997). The central Alps are mostly protected by the alpine massif which leads 

to a continental climate with a lower precipitation regime, between 600 and 900 mm/year 

at 1000 m a.s.l (Ott et al. 1997) and mean temperature of -1.6°C in January and 14.9°C 

in July at Montana (1’427 m a.s.l.) (Federal Office of Meteorology and Climatology 2016). 

There, spruce and larch (Larix decidua) dominate the subalpine region. They are 

replaced by Swiss stone pine (Pinus cembra)  and mountain pine (Pinus mugo) at higher 

elevations, while lower down there are mostly forests with Scotch pine (Pinus sylvestris) 

(Ott et al. 1997). 

Species data  
The dataset on Ring Ouzel observations was collected within the Swiss breeding bird 

Atlas survey (Atlas) and the monitoring of the common breeding birds (MHB) by numer-

ous volunteers, under the supervision of the Swiss Ornithological Institute (SOI). We also 

used precise sightings of the species submitted on the ornitho.ch platform. 

The MHB is a national survey following standardized methods, on 267 squares of 1 km2 

systematically distributed over the country. The squares are visited three times per year 
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(two for the high elevation ones) since 1999. At each visit, the observer follows a fixed 

transect, the same every year and crossing the different habitats covering the square 

and reports every observation (visual or auditive) of all bird species as a precise point 

on a map. After the three visits and for each species, the observer groups his observa-

tions (only the ones corresponding to criteria that ensure a breeding event) into territories 

according to his knowledge about the species, km2 specificities and his observations 

details (like two males singing at the same time). Finally, the SOI controls and corrects 

the territory delimitation in a standardized manner. This simplified territory mapping pro-

tocol is described in detail in Kery, Royle & Schmid (2005), 

The Atlas is also a monitoring scheme running systematically over the country every 20 

years since 1973-76.  During the last period (2013-2016), 2’318 km2 (including the major 

part of the MHB squares) were visited. The same methods as for the MHB are used but 

the 3 visits per km2 are done in only one year during an Atlas period of 4 years (Knaus 

et al. 2018).  

For the home-range analysis, we thus used the precise observation points from both of 

these surveys and from submitted sightings on ornitho.ch for the 10 last years during the 

breeding peak from May to June (Appendix A.1). For the landscape scale analysis, we 

first used the estimated density of the period 2013-2016, i.e. the raw number of Ring 

Ouzels’ territories assessed in a visited km2 for the Atlas or MHB. We retained the mean 

density over this period for squares that were visited more than once. In addition, we 

also considered an estimate of the population trend over the last 20 years. For this, we 

used the difference between the modelled densities in the Atlas period 1993-96 and 

2013-16 (Appendix A.2 and A.3), and not between estimated densities because those of 

the first period were truncated to a maximum of 10 territories. The density was modelled 

by the SOI using a binomial mixture model taking into account the species-specific de-

tection probability, a set of environment variables and spatial autocorrelation, in order to 

maximise the predictive performance over Switzerland (see Guelat & Kery 2018; and 

Knaus et al. 2018). In summary, we worked with a binomial variable of presence/absence 

at the home range scale and retained the estimated density from standardized surveys 

along with the modelled population trend for the landscape scale analyses. 

Km2 selection  
In order to define habitat suitability at both scales, we chose 47 km2 visited within the 

Atlas or MHB surveys and widespread across the study area (Fig. 1). We stratified our 

selection according to the modelled density in 2013-16 (Appendix A.2), the population 

trend (Appendix A.3) and the elevation (Appendix B.1) in order to have a representative 

sample of the Ring Ouzel’s habitat and distribution range. For the km2 selection only, we 

used the modelled density instead of the estimated density. We first categorized squares 
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into high and low density, with a threshold at the median (= 4) of all surveyed km2 with 

more than 2 territories/km2 over Switzerland (Appendix B.2). Squares were further cate-

gorized into decreasing population trend (density difference <	−1) or stable or increas-

ing (≥	−1	) (Appendix B.3). To select squares with a decline, we did not allow the 95% 

CI to cross zero, so that our selection was more robust. We thus ended up with four 

categories (low and stable density, low and decreasing, high and stable, high and de-

creasing) and with a similar altitudinal gradient for each of them. The last criteria were 

the accessibility and the distance for fieldwork feasibility. For the analysis on population 

trend, 105 additional km2 were selected to increase our sample size so that 152 km2 

were considered in the analysis (Fig. 1).    

Environmental data collection 

Each of the selected 47 km2 was split into 16 quadrats of 200x200m (4 ha) after the 

exclusion of a 100m width internal buffer (Fig. 2). Field data (FD) was collected in 8 of 

those quadrats arranged in a checkerboard pattern, and two of them were retained for 

the home range analysis, one as a presence and one as a pseudo-absence. This selec-

tion was based on the distribution of observations of potential breeding birds from the 

past 10 years, with the presence containing the highest density of observation points and 

the pseudo-absence no observation at all (Fig. 2). The area of the quadrat approximates 

well the size of a home range in the Alps (Barras, unpublished data), but to be conserva-

tive, we did not allow a presence and a pseudo-absence to be contiguous. Remote-

sensed data (RSD) was prepared at two resolutions: 200m for the home range analysis 

and 1km for landscape scale models. 

Occurrence probability at the home range scale  

To obtain the FD at the home range scale, we mapped the habitat at the presence and 

pseudo-absence quadrats (Fig. 2) of each selected km2 according to a predefined set of 

environmental variables (Table 1). Before the mapping, we played a tape luring of the 

fledgling’s distress call to make a supplementary control of occurrence and to ensure 

that the pseudo-absence quadrat was not occupied. We also played this tape in the 6 

other quadrats to assess presence, so that we could find a replacement pseudo-absence 

when the first one turned out to be a false absence.  Then, we measured the environ-

mental variables over different reference areas on the quadrat to best describe the hab-

itat (Table 1): in a 50m radius and in two 20x20m plots (one centred and one at 50m 

distance with a random bearing), in which some variables were also measured on two 

10x10m diagonal subplots (Fig. 2). For the analysis, we used the mean between the two 

20x20m plots within one quadrat. We measured variables linked to the vegetation layers’ 

composition and structure, like the forest, bush or grassland cover. We also mapped the 

ground cover, particularly the variables influencing the ground accessibility, like bare 
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ground/ litter or grass/forbs covers and ground vegetation patchiness or height. The land 

use state was also considered, through the grazing intensity or the cover of shrub, re-

generation and bushes, because in abandoned lands, woody plants and trees grow 

again and their covers increase. Moreover, as the soil conditions appeared to be im-

portant for the foraging habitat selection (Barras et al. 2019), we investigated the soil 

wetness and nutrient content. These two variables were qualitative and related to the 

Landolt’s values of some predefined widespread plant species (Appendix C.3). In addi-

tion, only at this scale, we measured the soil moisture and penetrability in the 2 diagonal 

subplots. (following Barras et al. 2019). In the analysis, we also tested the addition of a 

quadratic term of some variables for which we hypothesized a unimodal response: soil 

moisture and hardness, accessible ground cover, ground vegetation cover and canopy 

cover. 

In addition to FD, we prepared a set of RSD with three categories: climate, topography 

and land cover (Table 2). Precipitation and temperature data was obtained from World-

Clim (www.worldclim.org) with a resolution of 1km. All topography data was extracted 

from a digital elevation model (DEM) of 25m resolution (from the Swiss Federal Office of 

Topography, SwissTopo). The land cover data came from the Swiss Map Vector 25 

BETA (rasterized to 25x25m; SwissTopo), but the cover of meadow, pasture and unpro-

ductive land was calculated with land use data of the Swiss Federal Statistical Office at 

100m resolution and masked with the cover of other soils from the Vector 25 to increase 

the precision. We aggregated all these layers as raster maps of 200m resolution taking 

the mean values (Appendix C.2). 

For the analysis, the variables with more than 70% of zero values were set as binary, 

presence/absence factors (1/0), and we removed the marginal ones (> 90% zero values) 

(Appendix C.1 and C.2). The variables indicating a cover were arcsine-square-root trans-

formed and we standardized the whole set of explanatory variables. 

Estimated population density at the landscape scale 

For the FD at the landscape scale, we also mapped the 6 other 200x200m quadrats of 

each km2 with the same methods as for the home range scale, but only the middle 

20x20m plot per quadrat was mapped (Fig. 2) and without measuring soil moisture and 

penetrability (Table  1). For the statistics, we used the common habitat variables meas-

ured in all 8 quadrats (including the presence/pseudo-absence ones) and we took the 

median values of each factor per km2 (Appendix C.1). Here, the median value seemed 

more representative as there was often a high heterogeneity within a km2. Moreover, as 

we expected that the heterogeneity of the habitat could play an important role, we also 

calculated the median absolute deviation (MAD) for some variables like the vegetation 
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cover or the grazing intensity, which composed one additional category in this dataset 

(Table 1).  

We used the same set of RSD as for the home range scale and added a mineral category 

with the cover of limestone bedrock, scree, rock and anthropogenic area (Table 2) Here, 

all the RSD were aggregated to a resolution of 1km considering the mean (Appendix 

C.2), and for the same reason as above, we also calculated the standard deviation for 

some variables about vegetation covers, composing another category in this dataset too 

(Table 2). The variable transformation followed the one explained for the home range 

scale. 

Population trend at the landscape scale 

Since the modelled population trends partially depended on RSD, the comparison be-

tween the predictive ability of FD and RSD was not meaningful in this case. For this 

model, we therefore used only RSD - the same as in the analysis on estimated density 

(Table 2) - that we also prepared for the 105 additional km2 (Appendix C.2), increasing 

our sample size to 152 km2.  

Statistical analysis  
Occurrence probability at the home range scale 

To investigate home range selection, we compared the habitat factors (FD and RSD) 

between the presence and the pseudo-absence quadrats (Fig. 3), so at a 200m resolu-

tion. With this binomial response variable, we used a hierarchical logistic regression for 

the habitat selection model; we thus performed a generalized linear mixed effect model 

(GLMM) with a binomial error distribution and a logit link function (Arlettaz et al. 2012). 

We used the function glmer from the lme4 R-package (Bates et al. 2015) to run this 

analysis. The habitat characteristics were our explanatory variables and we set the km2 

identity as random effect to avoid non-independence of the data from a quadrat pair.  

Estimated population density at the landscape scale 

We aimed to investigate which environmental characteristics drive the Ring Ouzel’s pop-

ulation density at the landscape scale, at 1km resolution. Therefore, we carried out mod-

elling processes with the estimated density according to our FD and RSD as explanatory 

sets, on the 47 km2 selected (Fig. 3). We used generalized linear models with a normal 

distribution (GLMM) and not Poisson, since averaged densities over several years were 

sometimes non-integer values. The response variable was thus log-transformed to fit a 

normal distribution. The models were performed with the glm function from the stats R-

package (R Core Team 2017). 

Population trend at the landscape scale 

To better understand the reasons behind the Ring Ouzel’s decline, we performed a 

model on the population trend according to RSD from the 152km2 (Fig. 3). The population 
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trend response variable was continuous and followed a left-skewed negative distribution; 

to make it correspond to a normal distribution, we applied the following transformation: 

	&(𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑡𝑟𝑒𝑛𝑑	𝑣𝑎𝑙𝑢𝑒 + 0.001) − 𝑡𝑟𝑒𝑛𝑑	. Furthermore, we had a higher amount of 

squares, some close to each other and we suspected that spatial autocorrelation could 

be a problem. The calculation of the Moran’s I factor on the full generalized linear model 

showed a strong spatial autocorrelation (p-value < 2.2 e-16), so that we opted for a linear 

model using generalized least squares (gls function) from the nlme package (Pinheiro & 

Bates 2019) taking into account this autocorrelation. To find the appropriate correlation 

structure class, we built a full model without correlation structure and 5 others with the 

available classes (gaussian, spherical, exponential, linear and rational). Then, we com-

pared them with anova function from the stats package (R Core Team 2017) and we 

opted for the gaussian class as it had the lowest AICc.  

Model selection process  
For both presence/absence and estimated density as response variables, we went 

through two first model selection processes: one with the FD and one with the RSD as 

explanatory factors. For the population trend model, we ran the selection only with RSD 

only (Fig. 3). The model selection was the same for each dataset type. Due to the large 

number of explanatory variables, each set was further divided into categories to ease 

the selection process (Table 1 & 2). Per category, we removed variables with a high 

Spearman correlation coefficient (|rs|> 0.65), keeping the factor with the lowest p-value 

in the univariate models. In each model fitted with variables of one category, we checked 

for variance inflation factor (VIF) <3, removing the variable with the highest VIF until all 

VIFs went under this threshold. Thereafter, on each of those models, we used the dredge 

function from the MuMIn package (Bartoń 2018) which computed a list of all candidate 

models ranked by their AICc (Akaike Information Criterion with correction for small sam-

ples). We selected the best ranked models, keeping only those with △AICc < 2 from the 

best one, and removing those with uninformative parameters (Arnold 2010). As a last 

step, we ran a model with all variables retained in the best-models set of each category 

and once again, we performed the same selection process with the dredge function. 

Finally, we used the function model.avg from the MuMIn package (Bartoń 2018) to obtain 

the conditional averaged model from this last candidate models sets (from the △AICc < 

2). After this selection, we obtained two final models (one with FD and one with RSD) for 

both the occurrence probability and the estimated density, and only one (with RSD) for 

the population trend. For the two former analyses, we computed a third selection for the 

combined models, i.e. containing all the explanatory factors retained in the first selection 

step of both FD and RSD models (Fig. 3). We used the same process as before, check-

ing the correlation coefficient and the VIF, then ran the dredge process and averaged 
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the candidate models set. To assess the performance of the various models obtained 

(FD, RSD and combined models) for occurrence probability and estimated density, we 

calculated the adjusted R-squared (adj R2) using the function r.squaredGLMM from the 

MuMIn package (Bartoń 2018) and the AICc value for models within the △AICc < 2 sets. 

At the end, we plotted each response variable according to the significant explanatory 

factors. For the occurrence probability and the estimated density, we drew the joint pos-

terior distribution with the arm package (Gelman & Su 2018) and 10’000 simulations (sim 

function) using the conditional averaged models predictions. This method (following 

Burnham & Anderson 2002),  taking into account the quantity of samples per model and 

model weights, computes the model-averaged posterior distribution with the 95% credi-

ble interval of the variable of interest while the others are set to their mean. For the 

population trend, we used the predict function of the stats package (R Core Team 2017) 

that draws the 95% confidence intervals from the averaged model too. We used the 

software R 3.3.3 (R Development Core Team 2018) for all the analysis. 

 
RESULTS 
We visited 47 km2 between 1’312 and 2’121 m a.s.l and collected the habitat variables 

in the field between the end of May and mid-July. Within them, we mapped 45 presence 

and 42 pseudo-absences quadrats. On those km2, we also extracted the RSD at the 

home range (200m) and landscape scales (1km). Moreover, we prepared RSD on the 

105 additional km2 for the population trend analysis on the 152 km2. The distribution of 

the km2 can be found in Figure 1. 

Occurrence probability at the home range scale 
Using FD, the △AICc < 2 set contained 3 models (Table 3.1.A) with 4 explanatory varia-

bles: the cover of bushes, edge presence, ground vegetation patchiness and height. The 

best model explained a relatively low proportion of variance (adj R2 = 0.24) and its AICc 

was 112. From the averaged model (Table 4.1.A), the ground vegetation patchiness (av-

erage estimate ± SD; 0.60 ± 0.27 and P = 0.027) and height (- 0.66 ± 0.27 and P  = 

0.015) were the two most important variables (importance value = 1 for both), showing 

the Ring Ouzel’s preference for shorter and patchy ground vegetation (Fig. 4). The bush 

cover had a marginal but positive effect (0.46 ± 0.25 and P  = 0.075). 

Regarding the model with RSD, 3 models were in the △AICc < 2 too but with only 2 

variables (Table 3.1.B). Here, the best model had a very low performance according to 

the adj R2 = 0.06 and the AICc value was substantially higher than the best FD model 

(122). Moreover, in the averaged model, the elevation (0.40 ± 0.23 and P = 0.084) and 

the presence of meadows (- 1.11 ± 0.64 and P = 0.09) had only a marginal impact on 
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the occurrence probability (Table 4.1.B). At this scale, the RSD had a very low prediction 

ability unlike FD. 

Finally, the combined model with FD and RSD had 9 candidate models in its △AICc < 2 

set with the 2 same predictors as the RSD model and the 4 from the FD one (Table 

3.1.C). The best model explained a similar proportion of variance than the FD model (adj 

R2 = 0.26) and the AICc value was also close (111). In the averaged model, the presence 

of an edge (0.95 ± 0.54 and P = 0.082) influenced marginally the Ring Ouzel’s presence, 

but the ground vegetation height and patchiness were still the most important variables 

(1 and 0.88) (Table 4.1.C). As the candidate models of the combined model were quite 

numerous with an output similar to the model with only FD and that the model with RSD 

had a very low performance, the FD was the best predictor of occurrence at the home 

range scale. 

Estimated population density at the landscape scale 
With FD, 3 models remained in the △AICc < 2 set with 4 variables and the best model 

had a low performance regarding the adj R2 = 0.19 (Table 3.2.A). The AICc value of the 

best candidate model was 101. At this scale, the grazing heterogeneity (MAD) (estimate 

± SD; 0.17 ± 0.10 and P = 0.11) and vegetation height (- 0.17 ± 0.10 and P = 0.09) were 

both retained, but showed no significant effect in the averaged model. The soil wetness 

and nutrient content were the most important predictors (importance value = 1 for both) 

(Table 4.2.A).  

Only one model was retained in the △AICc < 2 set with the RSD and contained 3 factors 

(Table 3.2.B). This model predicted better the estimated population density than with FD 

(adj R2= 0.27, AICc = 96). The mean precipitation during the breeding season showed a 

strong positive impact (0.30 ± 0.10 and P = 0.003). It appeared that the cover of open 

forest (0.20 ± 0.09 and P = 0.036) and the slope steepness (0.24 ± 0.10 and P = 0.014) 

had a positive influence too. (Table 4.2.B and Fig. 5). Moreover, at this scale, RSD per-

formed better than at the home range scale. 

Lastly, the output of the combined model’s selection contained only one model too, with 

1 variable from RSD and 2 from FD (Table 3.2.C). Its performance was similar to the 

model with RSD only (adj R2= 0.28, AICc = 95). Here, the two factors linked to the soil 

condition (wetness and nutrient content) came up again with the same effects: negative 

for the nutrient content (- 0.34 ± 0.11 and P = 0.004) and positive for the wetness (0.29 

± 0.11and P = 0.012). The population density was significantly higher where the soil 

conditions were moderately wet and nutrient poor (Fig. 6.1 and 6.2). A predictor that was 

not retained in the RSD model, the cover of limestone bedrock, showed a strong positive 

relationship (0.27 ± 0.09 and P = 0.007) with the population density (Table 4.2.C and 

Fig. 6.3). As the model with RSD and the combined one were the most performant, we 
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consider both of them as equivalent for the prediction of population density at this scale. 

However, the model with FD only performed rather badly so that RSD appears as the 

best predictor at this scale. 

Population trend at the landscape scale 
For the model on population trend, 2 models stayed in the △AICc < 2 set with 3 environ-

mental factors (Table 3.3). From the averaged model, the cover of open forest had a 

marginal negative effect (average estimate ± SD; - 0.03 ± 0.02 and P = 0.087). The 2 

other factors were linked to the land use and impacted positively the population trend 

(Fig. 7): the proportion of pasture (0.05 ± 0.02 and P = 0.008) and unproductive land 

(0.06 ± 0.02 and P = 0.004 ) (Table 4.3).  

 
DISCUSSION 
In this study, we used a multi-scale approach to characterize the breeding habitat selec-

tion of Ring Ouzels in the western Swiss Alps. In particular, we investigated which envi-

ronmental factors best describe occurrence probability at the home range scale, as well 

as population density and trend at the landscape scale. Moreover, we highlighted that 

field collected data performed better at the smaller scale while remote sensed variables 

or a combination of both were better predictors of patterns at the larger scale. Within the 

home range, the ground vegetation structure, through patchiness and height, was the 

most important factor. Concerning the landscape scale, the soil conditions and the hab-

itat heterogeneity through forest openness and slope steepness appeared crucial to sup-

port higher population densities. Finally, a high proportion of pasture and unproductive 

land seemingly influence positively the population trends.  

In our study, we used presence/absence data, raw density estimates and modelled den-

sities taking into account spatial autocorrelation and imperfect detectability. We have to 

recall that the raw population estimated densities can be easily underestimated due to 

the discrete behaviour of the species (Kery, Royle & Schmid 2005), but we didn’t expect 

detectability to change a lot between the squares, so that relative differences would be 

equivalent. Moreover, as the aim was to understand the ecological reasons behind den-

sity differences across the landscape, and not to make realistic projections of density 

over Switzerland, the use of this data was appropriate in this form. Concerning modelled 

densities, those represented the only way to get an estimate of population trend, as Atlas 

data from the previous period was collected in a slightly different manner. Since those 

densities predictions were modelled using environmental variables present in our RSD, 

comparison between FD and RSD performance was not possible in this case. It was also 

hard to completely take into account the spatial autocorrelation for this model. Further-

more, population trend does not seem independent from density, since decline occurs 
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mostly in the regions with high densities. We thus have to be careful when interpreting 

the results about population trend.   

This study underlines the importance of choosing the appropriate type of data (RSD or 

FD), i.e. the one that best fits the focus scale, to identify habitat preferences (Jähnig et 

al. 2018). Actually, field mapping produces more precise data, but is time consuming, 

especially in harsh environment like mountains. On the other hand, remote sensed vari-

ables are quite easy to collect and allow covering large regions, but they often offer in-

complete information about precise features. The most efficient technique would be to 

identify RSD that can be used as reliable proxies (i.e. substitute variables) for FD. From 

this study, it appeared that FD predicted better the Ring Ouzel’s presence at the home 

range scale, whereas the population density at the landscape scale was better explained 

either by RSD or a combination with FD. This confirms the difficulty to predict precise 

features at a small scale with remote sensed methods. We could identify a potential 

proxy at the landscape scale: the precipitation amount during the breeding season had 

a similar effect on the estimated density as the soil wetness assessed in the field and 

both were positively correlated (rs = 0.49). However, at the home range scale, the RSD 

had a very low predictive ability overall and no predictors appeared as a reliable proxy 

of important FD variables. Looking across scales, it is possible that the slope steepness 

revealed at the landscape scale reflects the higher availability of patchy and short ground 

vegetation identified as important at the home range scale.  

Several factors linked to the soil characteristics appeared as crucial for Ring Ouzels’ 

habitat selection. These particularities have been shown to be relevant habitat features 

for several other bird species foraging on the ground (Patthey et al. 2012; Brambilla et 

al. 2017; Salek, Zeman & Vaclav 2019). One underlying mechanism could be the soil 

accessibility, through the relationships with ground vegetation patchiness and height at 

the home range scale, which confirms findings at the foraging scale on Ring Ouzels 

populations from the UK (Burfield 2002), the Carpathians (Ciach & Mrowiec 2013) and 

the Alps (Barras et al. 2019). Indeed, the grassy patches act as a reservoir where soil 

invertebrates are more abundant while they are easier to catch on bare areas (Arlettaz 

et al. 2012; Leal et al. 2019). In addition, soil accessibility is as well increased in the 

selected short grass swards, as already highlighted for other alpine species (Brambilla 

et al. 2018). It is likely that the ground vegetation structure, and therefore soil accessibil-

ity, act as an environmental cue when choosing the home range, as a signal of food 

availability. The fact that this species-habitat relationship is still detected at larger scales 

may indicates that it is particularly crucial for Ring Ouzels habitat selection.   
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The soil conditions through the wetness and the nutrient content at the landscape scale 

were also identified as crucial predictors. The soil moisture importance was already high-

lighted at the foraging scale (Barras et al. 2019) and for other thrush species like the 

song thrush Turdus philomelos (Peach, Robinson & Murray 2004). Actually, earthworms 

constitute the major part of the regime of the Ring Ouzel and several other thrush species 

(Burfield 2002; Maumary, Valloton & Knaus 2007), and their preference for moist soils is 

well known. As a consequence, they move deeper in the soil during dry periods and 

reach the surface in wetter soil or after rainfalls (Onrust et al. 2019). They are thus more 

accessible for the birds when the soil is more humid. The positive influence of the amount 

of precipitation during the breeding season (still at the landscape scale) also reflects this 

preference for wetter conditions. Interestingly, the relationship with soil humidity that we 

detected at the landscape scale was linear, while it was hump-shaped at the foraging 

site scale (Barras et al. 2019). This can be an illustration of the hierarchical habitat se-

lection process, with the bird selecting first regions containing essentials habitat features 

and then foraging sites with a precise optimum (see Bosco 2014). Concerning the nutri-

ent content in the soil, Ring Ouzels prefer relatively poor soil which supports the popula-

tion preference to establish in extensively pastured landscape with nutrient poor grass-

land, assessed in the Alps (see von dem Bussche et al. 2008). However, earthworm 

abundance has been shown to correlate positively with rich soils in alpine grasslands 

(Steinwandter et al. 2019). Although the Ring Ouzel’s prey may be more abundant in 

nutrient-rich soils, the grass layer will also grow denser and higher (Humbert et al. 2016), 

and it is also known that the inputs of organic matters dries out the soil surface (Onrust 

et al. 2019). Both effects may therefore decrease ground invertebrate availability. The 

influence of these soil conditions on the population density reveals probably the prey 

availability importance for Ring Ouzels’ breeding and thus highlights this essential spe-

cies-habitat relationship at the landscape scale too.  

Ring Ouzels density seemed higher where limestone bedrock was present. The parental 

substrate influences soil conditions through physical properties, the pH, the availability 

of essential component (phosphate, nitrogen and potassium) among others (Gobat, 

Aragno & Matthey 2013). These characteristics drive the vegetation community and thus 

the next trophic levels. The biological activity is often also stronger on limestone due to 

the specificities of this bedrock type (Gobat, Aragno & Matthey 2013) which results in 

the formation of more organic matter and could reflect an abundance of earthworms 

(Curry 2004). Moreover, some woody plants like blueberry (Vaccinium myrtillus) or rho-

dodendron (Rhododendron ferrugineum) that often form a dense layer and reduce soil 

accessibility are not abundant on lime substrate (Ellenberg 1992). However, within the 

study area, this bedrock type is situated mostly in the northern Alps where precipitation 
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amount is also higher and where the highest population densities occur. Therefore, it is 

difficult to disentangle the individual effects of these factors, but it is well possible that 

both play a role. 

It has been shown that Ring Ouzels select open and heterogeneous habitat across their 

breeding range (Sim et al. 2007; Ciach & Mrowiec 2013). In the Alps, it typically breeds 

at the timberline ecotone, where the forest is interspersed with open grasslands (von 

dem Bussche et al. 2008). At the landscape scale, this preference was confirmed by the 

positive influence of the open forest cover on the estimated density. Nevertheless, it did 

not appear at the home range scale, maybe because the species does not rely on a 

particular forest structure within its home range as long as it is within the subalpine belt. 

Still at the landscape scale, bird abundance was higher in steeper slopes. Those habitats 

are often not used for pasture or agriculture, but are characterized by a strong natural 

dynamic driven by the steepness (Salek, Zeman & Vaclav 2019). Indeed, they are often 

corridors where avalanches prevail in winter or where erosion is strong and the soil layer 

generally thinner. These parameters prevent upper vegetation layers from developing 

too high and dense, naturally creating a heterogeneous and open habitat. Ground veg-

etation is patchier and shorter for the same reasons and this also promotes prey availa-

bility. Finally, in the context of land use change, with the decreasing heterogeneity in 

human modelled areas, the steep slopes offer a less degraded and still heterogeneous 

habitat. 

Looking at the factors influencing the population trend, both pasture and unproductive 

land covers are linked to land use. Where their proportions were higher, the population 

seemed more stable. The pasture areas in the Alps are extensively grazed during the 

summer months, with a clear impact on the ground vegetation and the shrub layers. It 

artificially maintains the heterogeneity and openness of the habitat (Laiolo et al. 2004; 

Snell, Peringer & Bugmann 2017) like on the steep slopes or at the natural timberline, 

which is very rare in the Swiss Alps. The areas classified as unproductive are often com-

posed of rocky and less fertile soils, hence harbouring a high heterogeneity, and are less 

valuable for agriculture although they can be regularly grazed too (e.g. sheep). These 

areas are however mostly present at high elevations (with a correlation coefficient of rs= 

0.64 between these factors), which makes this relationship more difficult to interpret. 

Furthermore, the apparent negative effect of the open forest cover on population trend 

was in contradiction with the positive relationship with the estimated density. The reason 

could be that the regions supporting the highest densities are also facing the strongest 

decline.  

We could highlight that the Ring Ouzel’s breeding ecology in the Alps is closely linked to 

climate and land use characteristics, in particular through soil characteristics and habitat 
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heterogeneity. Therefore, it is most likely that predicted changes of climate and land use 

will have an impact on its populations (von dem Bussche et al. 2008; Barras et al. 2019). 

Firstly, as the precipitation regime is predicted to increase in winter in the mountains, but 

more as rain than snow, and to decrease in summer, drier conditions during the breeding 

season are to be expected (CH2018 2018). Secondly, the increasing land abandonment 

in the less productive zones associated with intensification at the lower elevations of the 

range is leading to the homogenization of the habitat (Price et al. 2015; OFAG 2017). 

Indeed, in abandoned pastures, the ground is almost no longer accessible due to the 

densification of the bush layer. In the intensified zones, the grass layer is densified to 

increase yield (Humbert et al. 2016) which similarly reduces soil accessibility and can 

increase the soil surface desiccation, that impacts prey availability too.  

Since our  study represents a basis to a better assessment of the vulnerability of the 

species in regard to environmental changes and that those are predicted to be amplified 

in the future (Reif & Flousek 2012), we propose specific management measures to con-

serve Ring Ouzel’s optimal habitat under changing conditions.  We therefore suggest 

focusing Ring Ouzels recovery programme on habitat heterogeneity and in this purpose, 

to re-adapt the land use practices which could also to some extent buffer the detrimental 

effects of climate change. Moreover, priority should be put on the less accessible and 

less productive zones where land abandonment occurs and is predicted to increase 

(Price et al. 2015). A come back to the traditional extensive pasture would favour earth-

worm abundance providing a bit more soil nutrient than abandoned areas (Steinwandter 

et al. 2019) but less than intensive ones. Cattle will also maintain the ground vegetation 

patchy and low (Leal et al. 2019). This management will slow down forest ingrowth and 

soil dewatering due to climate change, by keeping habitat open and diversified. Regard-

ing these important factors, it would be complementary to address further studies on 

relationships between the Ring Ouzel and its staple prey, as well as on predictions ac-

cording to diverse scenarios of climate and land use changes to better assess the vul-

nerability and spatially prioritize habitat management. Furthermore, the restoration of 

habitat heterogeneity within the subalpine belt would potentially profit to a number of 

other bird species (Patthey et al. 2012; Braunisch, Patthey & Arlettaz 2016; Jähnig et al. 

2018). 
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Tables 
Table 1 Field predictors (FD) distributed into the categories used for model selection. 
Factors in italic were measured only in the presence/absence quadrats.  

 
* Variables for which we also calculated the median absolute deviation to compose the 
category “heterogeneity” for the model selection at the landscape scale. 

Variables 
per category Description Unit Reference area 

Ground cover    
SNOW Percent of snow % 10x10m 
MOSS Percent of moss % 10x10m 
REGEN10 Percent of regeneration % 10x10m 
WP10 Percent of woody plants % 10x10m 
STEMS Percent of stems % 10x10m 
MIN Percent of rocks and stones % 10x10m 
DW Percent of deadwood  % 10x10m 
OTHER Percent of other cover % 10x10m 
AG Percent of accessible ground (bare ground and litter) % 10x10m 
GV Percent of ground vegetation (grass and forbs) % 10x10m 
Structure < 1.3 m    
GRASS * Percent of grassland % 50m radius 
REGEN20 * Percent of regeneration (trees < 1.3m) % 20x20m 
WP20 * Percent of juniperus, berry bushes and rhododen-

dron % 20x20m 

VEGH Ground vegetation height cm 10x10m 
PATCH Ground vegetation pattern: 1 = homogeneous, 2 = 

clumped, 3 = patchy 1-3 10x10m 

Structure > 1.3 m    
EDGE Edge presence Yes/No 50m radius 
FOR * Percent of forest % 50m radius 
COMPT Proportion of coniferous and deciduous tree: 1= only 

deciduous, 2 = mostly deciduous, 3 = mix, 4 = mostly 
coniferous, 5 = only coniferous 

1-5 50m radius 

BUSH * Percent of bush % 50m radius 
CANOP * Percent of canopy (>5m) % 20x20m 
SHRUB * Percent of shrub (1.3m < x <5m)  % 20x20m 
Condition    
WET50 * Soil wetness assessment from 1 = dry to 4 = muddy 

soil 1-4 50m radius 

GRAZ * Pasture intensity from 1 = no pasture to 5 = intense 
grazing 1-5 50m radius 

NSOIL * Soil nutrient content index from 1 = very poor to 5 = 
very fertile soil 1-5 20x20m 

WET20 * Soil wetness index from 1 = dry to 4 = moist soil 1-4 20x20m 
MOIST  Soil volumetric water content (moisture) VWC 10x10m 
HARD  Soil penetrability (hardness) kg/cm2 10x10m 
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Table 2 Remote sensed variables (RSD) distributed into the categories used for model 
selection. The “mineral” category was used only in the landscape scale models.  

 
* Variables for which we also calculated the standard deviation to compose the category 
“heterogeneity” for the model selection at the landscape scale. 

Variable  
per category Description Unit Source 

Climate + Topography    

PREC57 Mean summer precipitation (May-
July) mm Worldclim 

PREC122 Mean summer precipitation (De-
cember-February) mm Worldclim 

TAVE57 Average summer temperature 
(May-July) °C Worldclim 

TAVE122 Average winter temperature (De-
cember-February) °C Worldclim 

ALT Elevation m a.s.l DEM 

SLOPE  Slope degree DEM 

NORTH Northness (cosine of aspect)  DEM 

SOLRAD36 Solar radiation (March-June) W*h/m2 DEM 

Structure < 1.3 m    

MEAD * Percent of meadow % Swiss land use statistics 

PAST * Percent of pasture % Swiss land use statistics 

UNPROD * Percent of unproductive land % Swiss land use statistics 

GRASS Percent of grassland (sum of 
MEAD, PAST and UNPROD) % Swiss land use statistics 

Structure > 1.3 m    

BUSH Percent of bushes % Vector 25 

OPEN * Percent of open forest % Vector 25 

DENS * Percent of dense forest % Vector 25 

FOR * Percent of forest (sum of OPEN 
and DENS) % Vector 25 

LTREE Treeline length % Vector 25 

DLTREE Distance to the treeline % Vector 25 

NBTREE Number of solitary trees n Vector 25 

Mineral    

LIME Percent of limestone bedrock % Vector 25 

SCREE Percent of scree % Vector 25 

ROCK Percent of rock % Vector 25 

ANTHRO Percent of anthropogenic infra-
structures % Vector 25 
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Table 3 Candidate models retained in the △AICc < 2 set. For the variable description 
see Tables 1 and 2. If “01” is added to a name, the variable was set as a binary factor at 
this scale. 
3.1 Models set for the home range scale about occurrence probability with FD, RSD and 
both.  

 3.2. Models set for the landscape scale about the density with FD, RSD or both.  

3.3 Models set at the landscape scale about the population trend and only with RSD 
variables. 

Rank Models on occurrence probability K Deviance AICc △AICc Weight adj R2 

 A. Field data       

1 BUSH + EDGE + PATCH + VEGH 6 99.26 112.32 0 0.436 0.263  
2 BUSH + PATCH + VEGH 5 102.02 112.75 0.44 0.35 0.234  
3 PATCH + VEGH 4 105.24 113.74 1.42 0.214 0.194  

 B. Remote sensed data       

1 ALT + MEAD01 4 113.9 122.39 0 0.421 0.079 
2 MEAD01 3 116.84 123.13 0.74 0.291 0.044 
3 ALT  3 116.86 123.15 0.75 0.288 0.0425 

 C. Combined model       

1 ALT + EDGE + MEAD01 + PATCH + VEGH  7 95.84 111.26 0 0.186 0.311 
2 ALT + EDGE + PATCH + VEGH  6 99.04 112.09 0.83 0.123 0.256 
3 ALT + EDGE + MEAD01 + VEGH  6 99.06 112.12 0.86 0.121 0.266 
4 EDGE + PATCH + VEGH + BUSH 6 99.26 112.32 1.06 0.11 0.211 
5 ALT + MEAD01 + PATCH + VEGH  6 99.34 112.38 1.13 0.106 0.282 
6 EDGE + MEAD01 + PATCH + VEGH  6 99.56 112.61 1.35 0.095 0.271 
7 ALT + PATCH + VEGH  5 101.9 112.64 1.38 0.093 0.233 
8 PATCH + VEGH + BUSH 5 102.02 112.75 1.5 0.088 0.234 
9 MEAD01 + PATCH + VEGH  5 102.26 113 1.74 0.078 0.246 

Rank Models on estimated density K deviance AICc △AICc weight adj R2 

 A. Field data       

1 NSOIL + WET20 + VEGH 5 89.38 100.85 0 0.384 0.201 
2 NSOIL + WET20 + GRAZ 5 89.66 101.12 0.27 0.336 0197 
3 NSOIL + WET20  4 92.52 101.48 0.63 0.281 0.152 

 B. Remote sensed data       
1 OPFOR + PREC57 + SLOPE 5 84.96 96.43 0 1 0.269 

 C. Combined model       
1 LIME + NSOIL + WET20 5 84.44 95.91 0 1 0.277 

Rank Models on population trend K deviance AICc △AICc weight adj R2 

 Remote sensed data       

1 OPEN + PAST + UNPROD 7 36.89 51.67 0 0.602 0.899 
2 PAST + UNPROD 6 39.92 52.5 0.82 0.398 0.890 
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Table 4 Regression coefficient, standard error, P value and importance of the variables 
in the conditional averaged models from the △AICc < 2 set.  
 
4.1. Values for the occurrence probability models at the home range scale according to 
FD, RSD or both 
 

  

Averaged model: occurrence probability   

Response variable Coefficient Standard error P variable importance 

A. Field data     

(Intercept) -0.183 0.423 0.668 
 

Bush  0.459 0.254 0.075 0.79 
Forest edge (1) 0.85 0.517 0.106 0.44 
Patchiness 0.603 0.268 0.027 1 
Vegetation height -0.664 0.268 0.015 1 

B. Remote sensed data     

(Intercept) 0.193 0.245 0.437  
Elevation 0.401 0.229 0.084 0.71 
Meadow (1) -1.106 0.644 0.09 0.71 

C. Combined model     

(Intercept) -0.218 0.46 0.639  
Elevation 0.479 0.258 0.067 0.63 
Forest edge (1) 0.949 0.537 0.082 0.63 
Meadow (1) -1,286 0.734 0.084 0.59 
Patchiness 0.556 0.278 0.049 0.88 
Vegetation height -0.693 0.277 0.014 1 
Bush  0.459 0.254 0.075 0.2 
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4.2 Results for the models about estimated density at the landscape scale with FD, RSD 
or both. 

 
 
 
4.3 Values for the model at the landscape scale about population trend with RSD. 
  

Averaged model:  estimated density   

Response variable Coefficient Standard error P variable importance 

A. Field data     

(Intercept) 1.9 0.096 < 0.001  
Soil nutrient content -0.27 0.122 0.032 1 
Soil wetness 20 0.318 0.119 0.01 1 
Vegetation height -0.168 0.098 0.094 0.38 
MAD grazing intensity 0.169 0.103 0.11 0.34 

B. Remote sensed data      

(Intercept) 1.9 0.091 < 0.001  
Open forest 0.201 0.093 0.036 1 
Precipitation (5-7) 0.304 0.096 0.003 1 
Slope 0.243 0.095 0.014 1 

C. Combined model      

(Intercept) 1.9 0.09 < 0.001  
Limestone 0.267 0.094 0.007 1 
Soil nutrient content -0.342 0.113 0.004 1 
Soil wetness 20 0.293 0.112 0.012 1 

Averaged model:  population trend 

Response variable Coefficient Standard error P variable importance 

(Intercept) 2,065 0.096 < 0.001  

open forest -0.033 0.019 0.087 0.64 
pasture 0.053 0.02 0.008 1 
unproductive land 0.057 0.02 0.004 1 
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Figure legends 
 
Fig.1 Map of the study area showing: the selected 47km2 and their respective classifica-
tion regarding modelled density and trend, the 105 additional km2 used population trend 
models and the 2 biogeographic regions considered. 
 
Fig. 2 Schema explaining the field data sampling on a km2. The 8 200x200m blue quad-
rats are the mapped ones. The 2 circled are the ones used for the home range analysis: 
in green the presence and in red the pseudo-absence, which were chosen according to 
the Ring Ouzels observations (yellow dots). The zoom on a quadrat shows the different 
reference areas used for habitat mapping: 50m radius in green; in orange, the 20x20m 
plot in which ground cover variables were sampled in two diagonal subplots of 10x10m, 
the central plot (A) was mapped in the 8 quadrats while the offset one (B) was only 
sampled on the 2 presence/absence quadrats. 
 
Fig. 3 Schematic representation of the different fitted models according to the scales, 
the responses variables and the sets of the environmental factors. In green, the 7 types 
of models built in this study. 
 
Fig.4 Plots of estimates from the conditional averaged model with FD for the two varia-
bles with a significant effect according to occurrence probability, at the home range scale. 
The 95% credible intervals are in grey around the regression line and the red dashed 
lines correspond to the neutral selection: above the selection is positive and negative 
below. 
4.1 Shows the relation with the ground vegetation height in cm and 4.2 with the ground 
vegetation patchiness from 1(homogeneous) to 3 (patchy). 
 
Fig. 5 Plots of estimates from the conditional averaged model with RSD for the three 
variables with a significant effect according to estimated population density, at the land-
scape scale. The 95% credible intervals are in grey around the regression line. 
5.1 Shows the relation with the precipitation amount during the breeding season in mm, 
5.2 with the proportion of open forest cover in % and 5.3. with the slope steepness in 
degrees. 
 
Fig. 6 Plots of estimates from the conditional averaged model with RSD and FD (com-
bined) for the three variables with a significant effect according to the estimated popula-
tion density, at the landscape scale. The 95% credible intervals are in grey around the 
regression line. 
6.1 Shows the relation with the soil nutrient content from 1 (very poor soil) to 5 (very 
fertile soil), 6.2 with the soil wetness form 1 (dry soil) to 4 (very moist soil) and 6.3. with 
the proportion of limestone bedrock in %. 
 
Fig. 7 Plots of estimates from the conditional averaged model for the two variables with 
a significant effect according to the population trend, at the landscape scale. The 95% 
confidence intervals are in grey around the regression line. 
7.1 Shows the relation with the proportion of pasture in % and 7.2 unproductive land in 
%. 
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Fig. 6 
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Fig. 7 
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Additional Supporting Information 
 
Appendix A. Maps with the observation points, the modelled density and the popula-

tion trend obtained from the Swiss Ornithological Institute (SOI) 

Appendix B. Histograms of the 3 variables taken in account to stratify and select the 

47 km2 within the Atlas and MHB sets 

Appendix C. Descriptive statistics of the explanatory factors and list of the indicator 

plants  
 
 
  



 36 

Appendix A Maps with the observation points, the modelled density and the population 
trend obtained from the Swiss Ornithological Institute (SOI) 
 

 
Fig. A.1 Precise observation points of Ring Ouzels for the period 2008-2017 and during 
the breeding season (May-June). This data come from the national surveys (Atlas and 
MHB) and from observations submitted on the ornitho.ch platform. 
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Fig. A.2 Modelled density (number of territory/km2) for the period 2013-16 (from Knaus 
et al. 2018). Models are based on the estimated density from Atlas surveys, but corrected 
for detection probability and spatial autocorrelation, using land cover as predictors (see 
Guelat & Kery 2018). 

 

 
 
Fig. A.3 Ring Ouzels’ population trend according to the difference between the modelled 
densities for the Atlas periods 1993-96 and 2013-16.  
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Appendix B Histograms of the 3 variables taken in account to stratify and select the 47 
km2 within the Atlas and MHB sets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B.1 Frequency of km2 according to their mean elevation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B.2 Frequency of km2 according to the modelled density value. The vertical red line 
symbolizes the threshold value (median = 4) used to define the two strata: low and high 
density. Squares with density <2 were not considered 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B.3 Frequency of km2 according to the population trend and in red the threshold 
value (-1) used to define the two strata : declining and stable/increasing population.  
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Appendix C Descriptive statistics of the explanatory factors and list of the indicator 
plants  
Table C.1 Habitat variables sampled in each km2, distributed into categories used for 
model selection. For the home range analysis, the mean ± SD value are calculated, ex-
cept for the edge presence/absence considered as a factor. For the landscape scale, the 
median ± MAD are computed. Marginal variables (>90% of 0 values) are in italics. The 
number 10, 20 or 50 after some variable corresponds to the reference area.  

 
 

Habitat predictors 
per Category 

Mean ± standard deviation 
 (0:1 counts) Median ± median absolute deviation  

Presence plots Absence plots km2 

n = 45 n = 42 n = 47 

Ground cover    

snow 0 ± 0 0 ± 0 0 ± 0 
moss 3.2 ± 4.5 4 ± 5.8 0 ± 0 
regeneration 10 1.4 ± 1.4 1.6 ± 2.5 0.8 ± 1.1 
woody plants 10 8.1 ± 14.1 4.9 ± 9.6 1.2 ± 1.9 
stems  1 ± 0.9 0.9 ± 0.9 0.8 ± 1.1 
mineral 3.2 ± 2.7 3.3 ± 5.5 1.5 ± 2.2 
dead wood  3.3 ± 3.4 3.2 ± 3 1.2 ± 1.9 
other  0 ± 1 0 ± 1 0 ± 0 
AG  17.6 ± 14.9 14.5 ± 14.3 9 ± 3.3 
GV  62 ± 22.3 67.4 ± 24.8 68.5 ± 20.8 
Structure < 1.3 m   

 
grassland cover  49.8 ± 28.6 53.7 ± 31 60 ± 29.7 
regeneration cover 20  2.8 ± 3.6 3.1 ± 4.7 1 ± 1.5 
woody plants cover 20  12.4 ± 20.8 6.6 ± 11.7 1.5 ± 2.2 
vegetation height  15.9 ± 7.3 21.9 ± 11.2 19.8 ± 6.7 
patchiness  2.1 ± 0.4 1.8 ± 0.5 2.2 ± 0.7 
Structure > 1.3 m    
edge  (12:33) (20:22) 1 ± 0 
forest cover  41 ± 24.8 39.9 ± 31.1 27.5 ± 22.2 
bush cover  12.5 ± 18.4 6.4 ± 8.4 5 ± 7.4 
canopy cover  21.2 ± 19.4 23 ± 24.8 8.5 ± 12.6 
shrub cover  5.4 ± 8.5 7.7 ± 11.6 0 ± 0 
Tree composition        -        - 4.5 ± 0.7 
Condition 2.8 ± 0.5 2.7 ± 0.5  
soil wetness 50  2.7 ± 1.1 2.6 ± 1.2 3 ± 0 
grazing intensity  3 ± 0.6 3 ± 0.6 3 ± 1.5 
soil nutrient content  2.8 ± 0.6 2.8 ± 0.6 3 ± 0 
soil wetness 20  514.4 ± 326.9 524.4 ± 306.2 3 ± 0 
soil moisture  0.7 ± 0.4 0.7 ± 0.3     - 
soil hardness  0 ± 0 0 ± 0     - 
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Table C.2 Environmental factors extracted from remote sensed data for each pres-
ence/absence quadrat and km2 and displayed according to the categories used for the 
model selection. For the statistics, the mean ± SD is calculated for each variable on both 
scales. Variable with (0:1 counts) were transformed as binary in the analysis concerned.  
 

Habitat predictors 
per Category 

Mean ± standard deviation  
(0:1 counts) 

Mean ± standard deviation 
(0:1 counts) 

presence plots absence plots km2 
 n = 45 n = 42 n = 47 n = 152 

Topography +  
Climate 

    

precipitation (5-7) 150.7 ± 39.4 148.8 ± 40.2 150.4 ± 39.5 153.6 ± 41.2 
precipitation (12-2)  104.1 ± 22.5 101.1 ± 23.6 103.3 ± 22.9 104.7 ± 25.2 
temperature (5-7) 8.5 ± 1.3 9 ± 1.3 8.8 ± 1.4 80.7 ± 17.6 
temperature (12-2)  -4.3 ± 0.9 -3.9 ± 0.9 -4 ± 0.9 -45.5 ± 12.4 
elevation 1712.3 ± 211.3 1624.3 ± 217.9 1660.2 ± 223.3 1781.9 ± 303.9 
slope 23.4 ± 6.5 21.8 ± 7.1 23.9 ± 5 25.1 ± 6.5 
northness 0 ± 0.6 0.1 ± 0.6 0 ± 0.4 0 ± 0.4 

solar radiation (3-6)  559049.6 ± 
69786.8 

545504.4 ± 
69454 

552286.8 ± 
50797.1 

547681.8 ± 
59200.9 

Structure < 1.3 m     
meadow  0 ± 0.1 (41:4) 0.1 ± 0.1 (32:10) 0.1 ± 0.1 0 ± 0.1 
pasture  0.3 ± 0.3 0.3 ± 0.3 0.4 ± 0.2 0.4 ± 0.2 
unproductive land  0.1 ± 0.1 (34:11) 0 ± 0.1 (35:7) 0 ± 0 0.1 ± 0.1 
grassland  0.4 ± 0.3 0.4 ± 0.3 0.4 ± 0.2 0.5 ± 0.2 
Structure > 1.3 m     
bush  0 ± 0.1 (37:8) 0 ± 0 (36:6) 0 ± 0 0 ± 0.1 
dense forest  0.3 ± 0.3 0.4 ± 0.3 0.3 ± 0.2 0.2 ± 0.2 
open forest  0.1 ± 0.2 (34:11) 0.1 ± 0.2 (35:7) 0 ± 0.1 0 ± 0.1 
forest  0.4 ± 0.3 0.4 ± 0.3 0.3 ± 0.2 0.3 ± 0.2 
treeline length 272.5 ± 206.6 311.2 ± 233.1 6497.9 ± 3472.1 - 
distance to the treeline  107.6 ± 188.5 101.9 ± 167.9 125 ± 147.2 307.1 ± 469.8 
number of solitary trees 4.2 ± 4.9 3.3 ± 3.9 80.6 ± 41.7 - 
Mineral     
lime bedrock - - 0.2 ± 0.3 0.2 ± 0.3 
scree - - 0 ± 0 0.1 ± 0.1 
rock - - 0 ± 0 0.1 ± 0.1 
anthropogenic area - - 0 ± 0 (33:14) 0 ± 0 (116:37) 
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Table C.3 List of the indicator plants used to determine the soil wetness (Landolt’s H) 
and nutrient content (Landolt’s N)  

Species Subalpine Alpine Month flowering Type Landolt's H Landolt's N 
Achillea millefolium x (x) 6-9 dry 2 3 
Anthericum liliago (x) 

 
5-6 dry 1+ 2 

Arctostaphylos uva-ursi x x 4-7 dry 2 2 
Aster alpinus x x 6-8 dry 2 2 
Avenalla flexuosa x (x) 6-8 dry 2+w 2 
Campanula rotundifolia x (x) 5-9 dry 2 2 
Dianthus sylvestris x (x) 6-7 dry 1 2 
Echium vulgare x 

 
5-10 dry 2 3 

Erica carnea x (x) 3-6 dry 2 2 
Euphorbia cyparissias x x 4-6 dry 2 2 
Globularia cordifolia x x 5-7 dry 2w+ 2 
Juniperus communis  x x 5-8 dry 2(w) 2 
Oxytropis campestris (x) x 7-8 dry 2 2 
Plantago lanceolata x (x) 4-9 dry 2w+ 3 
Plantago media (x) 

 
5-7 dry 2 3 

Rumex sculatus x 
 

6-7 dry 2 2 
Sedum album x (x) 6-9 dry 1w 2 
Sempervivum montanum x x 7-8 dry 2 2 
Sesleria caerulea x x 3-8 dry 2w 2 
Silene nutens x (x) 6-7 dry 2 2 
Sorbus aria x 

 
5 dry 2w 2 

Trifolium montanum x (x) 5-7 dry 2w 2 
Veronica fruticans x x 6-7 dry 2 2 
Abies alba (x) 

 
5 humid 4w 3 

Aconitum napellus x x 6-8 humid 4w+ 5 
Alnus incana/viridis x (x) 2-6 humid 4w+ 4 
Bartsia alpina x x 6-8 humid 4w+ 3 
Cirsium oleraceum (x) 

 
6-9 humid 4w 4 

Filipendula ulmaria x 
 

6-8 humid 4w+ 4 
Parnassia palustris x x 7-9 humid 4w+ 2 
Petasites albus/hybridus x 

 
3-5 humid 4w+ 4 

Petasites paradoxus x x 4-5 humid 4w 3 
Phleum alpinum x x 7-8 humid 4w 2 
Pinguicula alpina/vulgaris x x 5-7 humid 4w+ 2 
Polygonum bistorta x 

 
5-7 humid 4w 4 

Rumex acetosa x 
 

5-8 humid 3w 4 
Rumex alpestris x (x) 7-8 humid 3+w 4 
Rumex alpinus x (x) 7-8 humid 3+w 5 
Soldanella alpina x x 5-7 humid 4w 3 
Thalictrum aquilegiifolium x (x) 5-7 humid 4w+ 3 
Trollius europaeus x (x) 5-6 humid 4w+ 3 
Urtica dioica x (x) 6-9 humid 3+w+ 5 
Viola biflora x x 5-8 humid 4w 4 
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