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ABSTRACT

Mountain ecosystems are facing various threats, notably rapid climate and land use
changes. Knowledge about the ecology of species living at high-elevation is usually in-
sufficient to properly predict their response to the new drivers impacting their habitat.
This represents a serious impediment to develop effective, spatially-explicit conservation
programmes. In particular, we lack a mechanistic understanding of species-habitat rela-
tionships at multiple spatial and temporal scales. We investigated the habitat selection
of the Alpine Ring Ouzel, a declining and threatened bird species of timberline ecosys-
tems. The main objective was to identify the factors driving both territory (home range)
selection and variation in population density across space and time. A second, method-
ological aim was to compare the performance of field-collected vs remote-sensed data
for developing appropriate predictive, mechanistic habitat suitability models. We mapped
habitat characteristics (field surveys) in 47 landscape units of 1 km? (W Swiss Alps) for
which data about presence, population density and demographic trend were available
from nation-wide monitoring schemes. If field-collected data better predicted territory se-
lection, population density was better predicted by either remote-sensed data alone, or
a combination of both field and remote-sensed information. The main results were that:
1) Ring Ouzels selected areas characterised by short and sparse ground vegetation; 2)
open and/or steep habitat offering wet and relatively nutrient-poor soil conditions sup-
ported higher population density; 3) the proportion of pasture and unproductive land pos-
itively influenced demographic trends. From a mechanistic viewpoint, many of these fac-
tors link to the previously evidenced foraging requirements of Alpine Ring Ouzel, notably
in terms of prey availability (abundance mediated by accessibility). Important for inform-
ing conservation, these results attest that climate and land use changes both exert an

impact on Ring Ouzel occurrence, density and population trend.
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INTRODUCTION

Mountainous regions host a rich and unique biodiversity across the world, but these hab-
itats are highly threatened by diverse factors. The most commonly cited driver is climate
change, with its known effects on range shrinkage, e.g. by impacting individual fitness or
species interactions (La Sorte & Jetz 2010; Scridel et al. 2018). In temperate mountain
ecosystems, land use change is also a threat, affecting habitat heterogeneity through
the intensification of the most productive zones and the abandonment of the less acces-
sible ones (Laiolo et al. 2004; Sirami et al. 2017; Lehikoinen et al. 2019). As well, the
increase of year-round leisure activities throughout the year put these regions at risk
(Arlettaz et al. 2007; Patthey et al. 2008). In Europe, the Alps represent a biodiversity
hotspot, so that alpine countries share the responsibility to conserve and manage moun-
tainous ecosystems appropriately. Within those habitats, the timberline ecotone is one
of the most biodiversity rich, but one subject to rapid changes, primarily due to the strong
increase in land abandonment leading to encroachment (Bolliger et al. 2007; Gehrig-
Fasel, Guisan & Zimmermann 2007; Price et al. 2015) but also due to its predicted up-
ward shift under rising temperatures (Carlson et al. 2017). Therefore, one can expect an
evident reduction of the timberline ecotone surface at higher elevations due the moun-
tains’ pyramidal shape. Moreover, it is unlikely that whole communities will simply shift
upwards since species-specific reactions to these drivers may differ in space and time
(Reif & Flousek 2012; Scridel et al. 2018). Therefore, beyond predictions about broad-
scale future species distributions according to climate and land use scenarios (Maggini
etal. 2011; Geary et al. 2015), there is a need to understand the mechanisms of species-
habitat interactions occurring at multiple scales. Such information is still largely lacking
and it prevents to precisely define targeted management measures and their spatial pri-
ority (Arlettaz et al. 2012; Braunisch, Patthey & Arlettaz 2016).

The Ring Ouzel (Turdus torquatus) is part of these species inhabiting mountains and
confronted with those threats. It is declining across some parts of its breeding range,
such as the UK (Wotton, Langston & Gregory 2002) where several studies were under-
taken (Beale et al. 2006; Sim et al. 2007), and Switzerland, where it is on the list for the
development of a recovery programme with the highest level of priority (Keller et al.
2010). Indeed, Switzerland, where this species has faced an important decline since the
1990s, hosts 15% of the European breeding population (Knaus et al. 2018). This
concerns the subspecies T.t. alpestris, that also occurs in other mountain ranges in
central Europe, and inhabits open forests and the timberline ecotone as described by a
few studies on its ecology (von dem Bussche et al. 2008; Ciach & Mrowiec 2013). Yet,
no recovery programme has been formulated, so that it appears crucial to study more in

depth the mechanisms driving its habitat selection at several scales.



Multi-scale studies help to understand the habitat selection processes of a species
according to environmental factors occuring at one or several spatial or temporal scales,
which is even more important for highly mobile species living in heterogenous habitats
(Johnson et al. 2004), like Ring Ouzels do. Indeed, habitat selection is a hierarchical
process that intervenes at multiple levels (Mayor et al. 2009; Apolloni et al. 2018;
Fattebert et al. 2018). The smallest scales about foraging site and patches selection,
respectively orders 3 and 4 following the definition of Johnson (1980), give information
about mechanisms driving habitat selection and essential ecological needs (Brambilla et
al. 2018). In a recent study on the Ring Ouzel, these small scales were investigated and
revealed the high importance of prey availability driven by soil conditions, ground cover
and vegetation structure, all showing marked seasonality patterns (Barras et al. 2019).
Nevertheless, studies about its habitat selection at larger scales in central Europe are
too rare to completely understand its ecology (but see von dem Bussche et al. 2008; and
Ciach & Mrowiec 2013). At the home range scale (order 2), the individual or pair will try
to find an habitat of the best quality for a succesful reproduction, taking into account
various envionmental cues, such as predation pressure or food and nesting site
availability (Coudrain, Arlettaz & Schaub 2010; Bosco et al. 2019). Understanding these
functional species-habitat associations helps to define targeted habitat management for
species conservation. Studying habitat selection at the largest scale (order 1) allows to
know how a population settled across a landscape, which is useful to refine habitat
management and particularly to prioritize it spatially (Braunisch, Patthey & Arlettaz
2016).

Moreover, when it comes to identifying habitat preferences of a species, it is crucial to
choose the type of data that best fits the focus scale, either acquired from the field (FD)
or from remote sensed methods (RSD) (Jahnig et al. 2018). Indeed, data collected in the
field offers a better precision on environmental factors intervening at fine spatial and
temporal scales and a good coverage of small areas but is hard to obtain on larger zones
as it is time consuming to collect. Data extracted from remote sensed methods allows
covering large areas, provides a better general view about landscape composition and
can be used for predictions according to future scenarios or for spatial prioritization.
However, there is a risk to miss some important fine-grained information. It is really val-
uable to compare FD and RSD performance at several scales to possibly identify remote
sensed factors that can be used as good proxies for data collected in the field, and thus
have easily accessible and area-wide data that is ecologically meaningful (Braunisch,
Patthey & Arlettaz 2016).

The first aim of this study was to define the Ring Ouzel’s breeding habitat preferences

at the larger spatial scales. As a second aim, we wanted to compare the performance to



predict habitat selection of both FD and RSD explanatory factors, as well as the
combination of both. At the home range scale, we thus analysed the occurrence
probability to investigate the best predictors of habitat selection with both FD and RSD.
At the landscape scale, we studied Ring Ouzels population density with the two types of
data as well. We also looked for predictors of population trend, this time only with RSD.
In the western Swiss Alps, we selected squares (1 km?) within the set of the national
breeding birds surveys areas, from which we had species count data. In those, we
collected habitat information in the field (FD) and extracted RSD from available
environmental GIS layers. Finally, the general aim of the study was to shed some light
on the reasons behind the species decline in order to define targeted management and

spatial priority for its conservation.

MATERIAL & METHODS

Study Area

The study was conducted in the western Swiss Alps within the Ring Ouzel’s altitudinal
breeding range (1300-2200 m a.s.l.). This area is divided into two biogeographic regions:
the northern Alps (including the Prealps) and the central Alps (Fig. 1). The northern Alps
are under oceanic climatic influence with a mean temperature of -1.7°C in January and
14.2°C in July at Adelboden (1’327 m a.s.l.) (Federal Office of Meteorology and
Climatology 2016) with more than 1’200 mm/year of precipitation at 1000 m a.s.l. (Ott et
al. 1997). The dominant winds come from the north and west and the subalpine forest is
dominated by spruce (Picea abies) that co-exists with fir (Abies alba) at lower elevations
(Ott et al. 1997). The central Alps are mostly protected by the alpine massif which leads
to a continental climate with a lower precipitation regime, between 600 and 900 mm/year
at 1000 m a.s.| (Ott et al. 1997) and mean temperature of -1.6°C in January and 14.9°C
in July at Montana (1’427 m a.s.l.) (Federal Office of Meteorology and Climatology 2016).
There, spruce and larch (Larix decidua) dominate the subalpine region. They are
replaced by Swiss stone pine (Pinus cembra) and mountain pine (Pinus mugo) at higher
elevations, while lower down there are mostly forests with Scotch pine (Pinus sylvestris)
(Ott et al. 1997).

Species data

The dataset on Ring Ouzel observations was collected within the Swiss breeding bird
Atlas survey (Atlas) and the monitoring of the common breeding birds (MHB) by numer-
ous volunteers, under the supervision of the Swiss Ornithological Institute (SOI). We also
used precise sightings of the species submitted on the ornitho.ch platform.

The MHB is a national survey following standardized methods, on 267 squares of 1 km?

systematically distributed over the country. The squares are visited three times per year
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(two for the high elevation ones) since 1999. At each visit, the observer follows a fixed
transect, the same every year and crossing the different habitats covering the square
and reports every observation (visual or auditive) of all bird species as a precise point
on a map. After the three visits and for each species, the observer groups his observa-
tions (only the ones corresponding to criteria that ensure a breeding event) into territories
according to his knowledge about the species, km? specificities and his observations
details (like two males singing at the same time). Finally, the SOI controls and corrects
the territory delimitation in a standardized manner. This simplified territory mapping pro-
tocol is described in detail in Kery, Royle & Schmid (2005),

The Atlas is also a monitoring scheme running systematically over the country every 20
years since 1973-76. During the last period (2013-2016), 2'318 km? (including the major
part of the MHB squares) were visited. The same methods as for the MHB are used but
the 3 visits per km? are done in only one year during an Atlas period of 4 years (Knaus
et al. 2018).

For the home-range analysis, we thus used the precise observation points from both of
these surveys and from submitted sightings on ornitho.ch for the 10 last years during the
breeding peak from May to June (Appendix A.1). For the landscape scale analysis, we
first used the estimated density of the period 2013-2016, i.e. the raw number of Ring
Ouzels’ territories assessed in a visited km? for the Atlas or MHB. We retained the mean
density over this period for squares that were visited more than once. In addition, we
also considered an estimate of the population trend over the last 20 years. For this, we
used the difference between the modelled densities in the Atlas period 1993-96 and
2013-16 (Appendix A.2 and A.3), and not between estimated densities because those of
the first period were truncated to a maximum of 10 territories. The density was modelled
by the SOI using a binomial mixture model taking into account the species-specific de-
tection probability, a set of environment variables and spatial autocorrelation, in order to
maximise the predictive performance over Switzerland (see Guelat & Kery 2018; and
Knaus et al. 2018). In summary, we worked with a binomial variable of presence/absence
at the home range scale and retained the estimated density from standardized surveys

along with the modelled population trend for the landscape scale analyses.

Km? selection

In order to define habitat suitability at both scales, we chose 47 km? visited within the
Atlas or MHB surveys and widespread across the study area (Fig. 1). We stratified our
selection according to the modelled density in 2013-16 (Appendix A.2), the population
trend (Appendix A.3) and the elevation (Appendix B.1) in order to have a representative
sample of the Ring Ouzel's habitat and distribution range. For the km? selection only, we

used the modelled density instead of the estimated density. We first categorized squares



into high and low density, with a threshold at the median (= 4) of all surveyed km2 with
more than 2 territories/lkm? over Switzerland (Appendix B.2). Squares were further cate-
gorized into decreasing population trend (density difference < —1) or stable or increas-
ing (= —1) (Appendix B.3). To select squares with a decline, we did not allow the 95%
Cl to cross zero, so that our selection was more robust. We thus ended up with four
categories (low and stable density, low and decreasing, high and stable, high and de-
creasing) and with a similar altitudinal gradient for each of them. The last criteria were
the accessibility and the distance for fieldwork feasibility. For the analysis on population
trend, 105 additional km? were selected to increase our sample size so that 152 km?

were considered in the analysis (Fig. 1).

Environmental data collection

Each of the selected 47 km? was split into 16 quadrats of 200x200m (4 ha) after the
exclusion of a 100m width internal buffer (Fig. 2). Field data (FD) was collected in 8 of
those quadrats arranged in a checkerboard pattern, and two of them were retained for
the home range analysis, one as a presence and one as a pseudo-absence. This selec-
tion was based on the distribution of observations of potential breeding birds from the
past 10 years, with the presence containing the highest density of observation points and
the pseudo-absence no observation at all (Fig. 2). The area of the quadrat approximates
well the size of a home range in the Alps (Barras, unpublished data), but to be conserva-
tive, we did not allow a presence and a pseudo-absence to be contiguous. Remote-
sensed data (RSD) was prepared at two resolutions: 200m for the home range analysis
and 1km for landscape scale models.

Occurrence probability at the home range scale

To obtain the FD at the home range scale, we mapped the habitat at the presence and
pseudo-absence quadrats (Fig. 2) of each selected km? according to a predefined set of
environmental variables (Table 1). Before the mapping, we played a tape luring of the
fledgling’s distress call to make a supplementary control of occurrence and to ensure
that the pseudo-absence quadrat was not occupied. We also played this tape in the 6
other quadrats to assess presence, so that we could find a replacement pseudo-absence
when the first one turned out to be a false absence. Then, we measured the environ-
mental variables over different reference areas on the quadrat to best describe the hab-
itat (Table 1): in a 50m radius and in two 20x20m plots (one centred and one at 50m
distance with a random bearing), in which some variables were also measured on two
10x10m diagonal subplots (Fig. 2). For the analysis, we used the mean between the two
20x20m plots within one quadrat. We measured variables linked to the vegetation layers’
composition and structure, like the forest, bush or grassland cover. We also mapped the

ground cover, particularly the variables influencing the ground accessibility, like bare



ground/ litter or grass/forbs covers and ground vegetation patchiness or height. The land
use state was also considered, through the grazing intensity or the cover of shrub, re-
generation and bushes, because in abandoned lands, woody plants and trees grow
again and their covers increase. Moreover, as the soil conditions appeared to be im-
portant for the foraging habitat selection (Barras et al. 2019), we investigated the soil
wetness and nutrient content. These two variables were qualitative and related to the
Landolt’s values of some predefined widespread plant species (Appendix C.3). In addi-
tion, only at this scale, we measured the soil moisture and penetrability in the 2 diagonal
subplots. (following Barras et al. 2019). In the analysis, we also tested the addition of a
quadratic term of some variables for which we hypothesized a unimodal response: soil
moisture and hardness, accessible ground cover, ground vegetation cover and canopy
cover.

In addition to FD, we prepared a set of RSD with three categories: climate, topography
and land cover (Table 2). Precipitation and temperature data was obtained from World-

Clim (www.worldclim.org) with a resolution of 1km. All topography data was extracted

from a digital elevation model (DEM) of 25m resolution (from the Swiss Federal Office of
Topography, SwissTopo). The land cover data came from the Swiss Map Vector 25
BETA (rasterized to 25x25m; SwissTopo), but the cover of meadow, pasture and unpro-
ductive land was calculated with land use data of the Swiss Federal Statistical Office at
100m resolution and masked with the cover of other soils from the Vector 25 to increase
the precision. We aggregated all these layers as raster maps of 200m resolution taking
the mean values (Appendix C.2).

For the analysis, the variables with more than 70% of zero values were set as binary,
presence/absence factors (1/0), and we removed the marginal ones (> 90% zero values)
(Appendix C.1 and C.2). The variables indicating a cover were arcsine-square-root trans-
formed and we standardized the whole set of explanatory variables.

Estimated population density at the landscape scale

For the FD at the landscape scale, we also mapped the 6 other 200x200m quadrats of
each km? with the same methods as for the home range scale, but only the middle
20x20m plot per quadrat was mapped (Fig. 2) and without measuring soil moisture and
penetrability (Table 1). For the statistics, we used the common habitat variables meas-
ured in all 8 quadrats (including the presence/pseudo-absence ones) and we took the
median values of each factor per km? (Appendix C.1). Here, the median value seemed
more representative as there was often a high heterogeneity within a km?. Moreover, as
we expected that the heterogeneity of the habitat could play an important role, we also

calculated the median absolute deviation (MAD) for some variables like the vegetation



cover or the grazing intensity, which composed one additional category in this dataset
(Table 1).

We used the same set of RSD as for the home range scale and added a mineral category
with the cover of limestone bedrock, scree, rock and anthropogenic area (Table 2) Here,
all the RSD were aggregated to a resolution of 1km considering the mean (Appendix
C.2), and for the same reason as above, we also calculated the standard deviation for
some variables about vegetation covers, composing another category in this dataset too
(Table 2). The variable transformation followed the one explained for the home range
scale.

Population trend at the landscape scale

Since the modelled population trends partially depended on RSD, the comparison be-
tween the predictive ability of FD and RSD was not meaningful in this case. For this
model, we therefore used only RSD - the same as in the analysis on estimated density
(Table 2) - that we also prepared for the 105 additional km? (Appendix C.2), increasing

our sample size to 152 km?.

Statistical analysis

Occurrence probability at the home range scale

To investigate home range selection, we compared the habitat factors (FD and RSD)
between the presence and the pseudo-absence quadrats (Fig. 3), so at a 200m resolu-
tion. With this binomial response variable, we used a hierarchical logistic regression for
the habitat selection model; we thus performed a generalized linear mixed effect model
(GLMM) with a binomial error distribution and a logit link function (Arlettaz et al. 2012).
We used the function gimer from the Ime4 R-package (Bates et al. 2015) to run this
analysis. The habitat characteristics were our explanatory variables and we set the km?
identity as random effect to avoid non-independence of the data from a quadrat pair.

Estimated population density at the landscape scale

We aimed to investigate which environmental characteristics drive the Ring Ouzel’s pop-
ulation density at the landscape scale, at 1km resolution. Therefore, we carried out mod-
elling processes with the estimated density according to our FD and RSD as explanatory
sets, on the 47 km? selected (Fig. 3). We used generalized linear models with a normal
distribution (GLMM) and not Poisson, since averaged densities over several years were
sometimes non-integer values. The response variable was thus log-transformed to fit a
normal distribution. The models were performed with the gim function from the stats R-
package (R Core Team 2017).

Population trend at the landscape scale

To better understand the reasons behind the Ring Ouzel's decline, we performed a

model on the population trend according to RSD from the 152km? (Fig. 3). The population



trend response variable was continuous and followed a left-skewed negative distribution;

to make it correspond to a normal distribution, we applied the following transformation:

\/(maximum trend value + 0.001) — trend . Furthermore, we had a higher amount of
squares, some close to each other and we suspected that spatial autocorrelation could
be a problem. The calculation of the Moran’s | factor on the full generalized linear model
showed a strong spatial autocorrelation (p-value < 2.2 e'®), so that we opted for a linear
model using generalized least squares (g/s function) from the nime package (Pinheiro &
Bates 2019) taking into account this autocorrelation. To find the appropriate correlation
structure class, we built a full model without correlation structure and 5 others with the
available classes (gaussian, spherical, exponential, linear and rational). Then, we com-
pared them with anova function from the stats package (R Core Team 2017) and we

opted for the gaussian class as it had the lowest AlCc.

Model selection process

For both presence/absence and estimated density as response variables, we went
through two first model selection processes: one with the FD and one with the RSD as
explanatory factors. For the population trend model, we ran the selection only with RSD
only (Fig. 3). The model selection was the same for each dataset type. Due to the large
number of explanatory variables, each set was further divided into categories to ease
the selection process (Table 1 & 2). Per category, we removed variables with a high
Spearman correlation coefficient (|rs|> 0.65), keeping the factor with the lowest p-value
in the univariate models. In each model fitted with variables of one category, we checked
for variance inflation factor (VIF) <3, removing the variable with the highest VIF until all
VIFs went under this threshold. Thereafter, on each of those models, we used the dredge
function from the MuMIn package (Bartorr 2018) which computed a list of all candidate
models ranked by their AICc (Akaike Information Criterion with correction for small sam-
ples). We selected the best ranked models, keeping only those with AAICc < 2 from the
best one, and removing those with uninformative parameters (Arnold 2010). As a last
step, we ran a model with all variables retained in the best-models set of each category
and once again, we performed the same selection process with the dredge function.
Finally, we used the function model.avg from the MuMIn package (Barton 2018) to obtain
the conditional averaged model from this last candidate models sets (from the AAICc <
2). After this selection, we obtained two final models (one with FD and one with RSD) for
both the occurrence probability and the estimated density, and only one (with RSD) for
the population trend. For the two former analyses, we computed a third selection for the
combined models, i.e. containing all the explanatory factors retained in the first selection
step of both FD and RSD models (Fig. 3). We used the same process as before, check-

ing the correlation coefficient and the VIF, then ran the dredge process and averaged
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the candidate models set. To assess the performance of the various models obtained
(FD, RSD and combined models) for occurrence probability and estimated density, we
calculated the adjusted R-squared (adj R?) using the function r.squaredGLMM from the
MuMIn package (Bartorn 2018) and the AlICc value for models within the AAICc < 2 sets.
At the end, we plotted each response variable according to the significant explanatory
factors. For the occurrence probability and the estimated density, we drew the joint pos-
terior distribution with the arm package (Gelman & Su 2018) and 10’000 simulations (sim
function) using the conditional averaged models predictions. This method (following
Burnham & Anderson 2002), taking into account the quantity of samples per model and
model weights, computes the model-averaged posterior distribution with the 95% credi-
ble interval of the variable of interest while the others are set to their mean. For the
population trend, we used the predict function of the stats package (R Core Team 2017)
that draws the 95% confidence intervals from the averaged model too. We used the

software R 3.3.3 (R Development Core Team 2018) for all the analysis.

RESULTS

We visited 47 km? between 1°312 and 2’121 m a.s.l and collected the habitat variables
in the field between the end of May and mid-July. Within them, we mapped 45 presence
and 42 pseudo-absences quadrats. On those km?, we also extracted the RSD at the
home range (200m) and landscape scales (1km). Moreover, we prepared RSD on the
105 additional km? for the population trend analysis on the 152 km?. The distribution of

the km? can be found in Figure 1.

Occurrence probability at the home range scale

Using FD, the AAICc < 2 set contained 3 models (Table 3.1.A) with 4 explanatory varia-
bles: the cover of bushes, edge presence, ground vegetation patchiness and height. The
best model explained a relatively low proportion of variance (adj R? = 0.24) and its AICc
was 112. From the averaged model (Table 4.1.A), the ground vegetation patchiness (av-
erage estimate + SD; 0.60 + 0.27 and P = 0.027) and height (- 0.66 + 0.27 and P =
0.015) were the two most important variables (importance value = 1 for both), showing
the Ring Ouzel’s preference for shorter and patchy ground vegetation (Fig. 4). The bush
cover had a marginal but positive effect (0.46 + 0.25 and P = 0.075).

Regarding the model with RSD, 3 models were in the AAICc < 2 too but with only 2
variables (Table 3.1.B). Here, the best model had a very low performance according to
the adj R? = 0.06 and the AICc value was substantially higher than the best FD model
(122). Moreover, in the averaged model, the elevation (0.40 + 0.23 and P = 0.084) and

the presence of meadows (- 1.11 + 0.64 and P = 0.09) had only a marginal impact on
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the occurrence probability (Table 4.1.B). At this scale, the RSD had a very low prediction
ability unlike FD.

Finally, the combined model with FD and RSD had 9 candidate models in its AAICc < 2
set with the 2 same predictors as the RSD model and the 4 from the FD one (Table
3.1.C). The best model explained a similar proportion of variance than the FD model (adj
R2=0.26) and the AICc value was also close (111). In the averaged model, the presence
of an edge (0.95 + 0.54 and P = 0.082) influenced marginally the Ring Ouzel’s presence,
but the ground vegetation height and patchiness were still the most important variables
(1 and 0.88) (Table 4.1.C). As the candidate models of the combined model were quite
numerous with an output similar to the model with only FD and that the model with RSD
had a very low performance, the FD was the best predictor of occurrence at the home

range scale.

Estimated population density at the landscape scale

With FD, 3 models remained in the AAICc < 2 set with 4 variables and the best model
had a low performance regarding the adj R? = 0.19 (Table 3.2.A). The AlCc value of the
best candidate model was 101. At this scale, the grazing heterogeneity (MAD) (estimate
+SD; 0.17 + 0.10 and P = 0.11) and vegetation height (- 0.17 + 0.10 and P = 0.09) were
both retained, but showed no significant effect in the averaged model. The soil wetness
and nutrient content were the most important predictors (importance value = 1 for both)
(Table 4.2.A).

Only one model was retained in the AAICc < 2 set with the RSD and contained 3 factors
(Table 3.2.B). This model predicted better the estimated population density than with FD
(adj R?= 0.27, AICc = 96). The mean precipitation during the breeding season showed a
strong positive impact (0.30 + 0.10 and P = 0.003). It appeared that the cover of open
forest (0.20 £ 0.09 and P = 0.036) and the slope steepness (0.24 £ 0.10 and P = 0.014)
had a positive influence too. (Table 4.2.B and Fig. 5). Moreover, at this scale, RSD per-
formed better than at the home range scale.

Lastly, the output of the combined model’'s selection contained only one model too, with
1 variable from RSD and 2 from FD (Table 3.2.C). Its performance was similar to the
model with RSD only (adj R?= 0.28, AICc = 95). Here, the two factors linked to the soil
condition (wetness and nutrient content) came up again with the same effects: negative
for the nutrient content (- 0.34 + 0.11 and P = 0.004) and positive for the wetness (0.29
+ 0.11and P = 0.012). The population density was significantly higher where the soll
conditions were moderately wet and nutrient poor (Fig. 6.1 and 6.2). A predictor that was
not retained in the RSD model, the cover of limestone bedrock, showed a strong positive
relationship (0.27 + 0.09 and P = 0.007) with the population density (Table 4.2.C and

Fig. 6.3). As the model with RSD and the combined one were the most performant, we
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consider both of them as equivalent for the prediction of population density at this scale.
However, the model with FD only performed rather badly so that RSD appears as the

best predictor at this scale.

Population trend at the landscape scale

For the model on population trend, 2 models stayed in the AAICc < 2 set with 3 environ-
mental factors (Table 3.3). From the averaged model, the cover of open forest had a
marginal negative effect (average estimate + SD; - 0.03 + 0.02 and P = 0.087). The 2
other factors were linked to the land use and impacted positively the population trend
(Fig. 7): the proportion of pasture (0.05 + 0.02 and P = 0.008) and unproductive land
(0.06 + 0.02 and P =0.004 ) (Table 4.3).

DISCUSSION

In this study, we used a multi-scale approach to characterize the breeding habitat selec-
tion of Ring Ouzels in the western Swiss Alps. In particular, we investigated which envi-
ronmental factors best describe occurrence probability at the home range scale, as well
as population density and trend at the landscape scale. Moreover, we highlighted that
field collected data performed better at the smaller scale while remote sensed variables
or a combination of both were better predictors of patterns at the larger scale. Within the
home range, the ground vegetation structure, through patchiness and height, was the
most important factor. Concerning the landscape scale, the soil conditions and the hab-
itat heterogeneity through forest openness and slope steepness appeared crucial to sup-
port higher population densities. Finally, a high proportion of pasture and unproductive
land seemingly influence positively the population trends.

In our study, we used presence/absence data, raw density estimates and modelled den-
sities taking into account spatial autocorrelation and imperfect detectability. We have to
recall that the raw population estimated densities can be easily underestimated due to
the discrete behaviour of the species (Kery, Royle & Schmid 2005), but we didn’t expect
detectability to change a lot between the squares, so that relative differences would be
equivalent. Moreover, as the aim was to understand the ecological reasons behind den-
sity differences across the landscape, and not to make realistic projections of density
over Switzerland, the use of this data was appropriate in this form. Concerning modelled
densities, those represented the only way to get an estimate of population trend, as Atlas
data from the previous period was collected in a slightly different manner. Since those
densities predictions were modelled using environmental variables present in our RSD,
comparison between FD and RSD performance was not possible in this case. It was also
hard to completely take into account the spatial autocorrelation for this model. Further-

more, population trend does not seem independent from density, since decline occurs
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mostly in the regions with high densities. We thus have to be careful when interpreting
the results about population trend.

This study underlines the importance of choosing the appropriate type of data (RSD or
FD), i.e. the one that best fits the focus scale, to identify habitat preferences (Jahnig et
al. 2018). Actually, field mapping produces more precise data, but is time consuming,
especially in harsh environment like mountains. On the other hand, remote sensed vari-
ables are quite easy to collect and allow covering large regions, but they often offer in-
complete information about precise features. The most efficient technique would be to
identify RSD that can be used as reliable proxies (i.e. substitute variables) for FD. From
this study, it appeared that FD predicted better the Ring Ouzel's presence at the home
range scale, whereas the population density at the landscape scale was better explained
either by RSD or a combination with FD. This confirms the difficulty to predict precise
features at a small scale with remote sensed methods. We could identify a potential
proxy at the landscape scale: the precipitation amount during the breeding season had
a similar effect on the estimated density as the soil wetness assessed in the field and
both were positively correlated (rs = 0.49). However, at the home range scale, the RSD
had a very low predictive ability overall and no predictors appeared as a reliable proxy
of important FD variables. Looking across scales, it is possible that the slope steepness
revealed at the landscape scale reflects the higher availability of patchy and short ground
vegetation identified as important at the home range scale.

Several factors linked to the soil characteristics appeared as crucial for Ring Ouzels’
habitat selection. These particularities have been shown to be relevant habitat features
for several other bird species foraging on the ground (Patthey et al. 2012; Brambilla et
al. 2017; Salek, Zeman & Vaclav 2019). One underlying mechanism could be the soil
accessibility, through the relationships with ground vegetation patchiness and height at
the home range scale, which confirms findings at the foraging scale on Ring Ouzels
populations from the UK (Burfield 2002), the Carpathians (Ciach & Mrowiec 2013) and
the Alps (Barras et al. 2019). Indeed, the grassy patches act as a reservoir where soil
invertebrates are more abundant while they are easier to catch on bare areas (Arlettaz
et al. 2012; Leal et al. 2019). In addition, soil accessibility is as well increased in the
selected short grass swards, as already highlighted for other alpine species (Brambilla
et al. 2018). It is likely that the ground vegetation structure, and therefore soil accessibil-
ity, act as an environmental cue when choosing the home range, as a signal of food
availability. The fact that this species-habitat relationship is still detected at larger scales

may indicates that it is particularly crucial for Ring Ouzels habitat selection.
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The soil conditions through the wetness and the nutrient content at the landscape scale
were also identified as crucial predictors. The soil moisture importance was already high-
lighted at the foraging scale (Barras et al. 2019) and for other thrush species like the
song thrush Turdus philomelos (Peach, Robinson & Murray 2004). Actually, earthworms
constitute the major part of the regime of the Ring Ouzel and several other thrush species
(Burfield 2002; Maumary, Valloton & Knaus 2007), and their preference for moist soils is
well known. As a consequence, they move deeper in the soil during dry periods and
reach the surface in wetter soil or after rainfalls (Onrust et al. 2019). They are thus more
accessible for the birds when the soil is more humid. The positive influence of the amount
of precipitation during the breeding season (still at the landscape scale) also reflects this
preference for wetter conditions. Interestingly, the relationship with soil humidity that we
detected at the landscape scale was linear, while it was hump-shaped at the foraging
site scale (Barras et al. 2019). This can be an illustration of the hierarchical habitat se-
lection process, with the bird selecting first regions containing essentials habitat features
and then foraging sites with a precise optimum (see Bosco 2014). Concerning the nutri-
ent content in the soil, Ring Ouzels prefer relatively poor soil which supports the popula-
tion preference to establish in extensively pastured landscape with nutrient poor grass-
land, assessed in the Alps (see von dem Bussche et al. 2008). However, earthworm
abundance has been shown to correlate positively with rich soils in alpine grasslands
(Steinwandter et al. 2019). Although the Ring Ouzel's prey may be more abundant in
nutrient-rich soils, the grass layer will also grow denser and higher (Humbert et al. 2016),
and it is also known that the inputs of organic matters dries out the soil surface (Onrust
et al. 2019). Both effects may therefore decrease ground invertebrate availability. The
influence of these soil conditions on the population density reveals probably the prey
availability importance for Ring Ouzels’ breeding and thus highlights this essential spe-
cies-habitat relationship at the landscape scale too.

Ring Ouzels density seemed higher where limestone bedrock was present. The parental
substrate influences soil conditions through physical properties, the pH, the availability
of essential component (phosphate, nitrogen and potassium) among others (Gobat,
Aragno & Matthey 2013). These characteristics drive the vegetation community and thus
the next trophic levels. The biological activity is often also stronger on limestone due to
the specificities of this bedrock type (Gobat, Aragno & Matthey 2013) which results in
the formation of more organic matter and could reflect an abundance of earthworms
(Curry 2004). Moreover, some woody plants like blueberry (Vaccinium myrtillus) or rho-
dodendron (Rhododendron ferrugineum) that often form a dense layer and reduce soil
accessibility are not abundant on lime substrate (Ellenberg 1992). However, within the

study area, this bedrock type is situated mostly in the northern Alps where precipitation
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amount is also higher and where the highest population densities occur. Therefore, it is
difficult to disentangle the individual effects of these factors, but it is well possible that
both play a role.

It has been shown that Ring Ouzels select open and heterogeneous habitat across their
breeding range (Sim et al. 2007; Ciach & Mrowiec 2013). In the Alps, it typically breeds
at the timberline ecotone, where the forest is interspersed with open grasslands (von
dem Bussche et al. 2008). At the landscape scale, this preference was confirmed by the
positive influence of the open forest cover on the estimated density. Nevertheless, it did
not appear at the home range scale, maybe because the species does not rely on a
particular forest structure within its home range as long as it is within the subalpine belt.
Still at the landscape scale, bird abundance was higher in steeper slopes. Those habitats
are often not used for pasture or agriculture, but are characterized by a strong natural
dynamic driven by the steepness (Salek, Zeman & Vaclav 2019). Indeed, they are often
corridors where avalanches prevail in winter or where erosion is strong and the soil layer
generally thinner. These parameters prevent upper vegetation layers from developing
too high and dense, naturally creating a heterogeneous and open habitat. Ground veg-
etation is patchier and shorter for the same reasons and this also promotes prey availa-
bility. Finally, in the context of land use change, with the decreasing heterogeneity in
human modelled areas, the steep slopes offer a less degraded and still heterogeneous
habitat.

Looking at the factors influencing the population trend, both pasture and unproductive
land covers are linked to land use. Where their proportions were higher, the population
seemed more stable. The pasture areas in the Alps are extensively grazed during the
summer months, with a clear impact on the ground vegetation and the shrub layers. It
artificially maintains the heterogeneity and openness of the habitat (Laiolo et al. 2004;
Snell, Peringer & Bugmann 2017) like on the steep slopes or at the natural timberline,
which is very rare in the Swiss Alps. The areas classified as unproductive are often com-
posed of rocky and less fertile soils, hence harbouring a high heterogeneity, and are less
valuable for agriculture although they can be regularly grazed too (e.g. sheep). These
areas are however mostly present at high elevations (with a correlation coefficient of rs=
0.64 between these factors), which makes this relationship more difficult to interpret.
Furthermore, the apparent negative effect of the open forest cover on population trend
was in contradiction with the positive relationship with the estimated density. The reason
could be that the regions supporting the highest densities are also facing the strongest
decline.

We could highlight that the Ring Ouzel’s breeding ecology in the Alps is closely linked to

climate and land use characteristics, in particular through soil characteristics and habitat
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heterogeneity. Therefore, it is most likely that predicted changes of climate and land use
will have an impact on its populations (von dem Bussche et al. 2008; Barras et al. 2019).
Firstly, as the precipitation regime is predicted to increase in winter in the mountains, but
more as rain than snow, and to decrease in summer, drier conditions during the breeding
season are to be expected (CH2018 2018). Secondly, the increasing land abandonment
in the less productive zones associated with intensification at the lower elevations of the
range is leading to the homogenization of the habitat (Price et al. 2015; OFAG 2017).
Indeed, in abandoned pastures, the ground is almost no longer accessible due to the
densification of the bush layer. In the intensified zones, the grass layer is densified to
increase yield (Humbert et al. 2016) which similarly reduces soil accessibility and can
increase the soil surface desiccation, that impacts prey availability too.

Since our study represents a basis to a better assessment of the vulnerability of the
species in regard to environmental changes and that those are predicted to be amplified
in the future (Reif & Flousek 2012), we propose specific management measures to con-
serve Ring Ouzel's optimal habitat under changing conditions. We therefore suggest
focusing Ring Ouzels recovery programme on habitat heterogeneity and in this purpose,
to re-adapt the land use practices which could also to some extent buffer the detrimental
effects of climate change. Moreover, priority should be put on the less accessible and
less productive zones where land abandonment occurs and is predicted to increase
(Price et al. 2015). A come back to the traditional extensive pasture would favour earth-
worm abundance providing a bit more soil nutrient than abandoned areas (Steinwandter
et al. 2019) but less than intensive ones. Cattle will also maintain the ground vegetation
patchy and low (Leal et al. 2019). This management will slow down forest ingrowth and
soil dewatering due to climate change, by keeping habitat open and diversified. Regard-
ing these important factors, it would be complementary to address further studies on
relationships between the Ring Ouzel and its staple prey, as well as on predictions ac-
cording to diverse scenarios of climate and land use changes to better assess the vul-
nerability and spatially prioritize habitat management. Furthermore, the restoration of
habitat heterogeneity within the subalpine belt would potentially profit to a number of
other bird species (Patthey et al. 2012; Braunisch, Patthey & Arlettaz 2016; Jahnig et al.
2018).
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Tables

Table 1 Field predictors (FD) distributed into the categories used for model selection.
Factors in italic were measured only in the presence/absence quadrats.

Variables Description Unit Reference area
per category
Ground cover
SNOW Percent of snow % 10x10m
MOSS Percent of moss % 10x10m
REGEN10 Percent of regeneration % 10x10m
WP10 Percent of woody plants % 10x10m
STEMS Percent of stems % 10x10m
MIN Percent of rocks and stones % 10x10m
DW Percent of deadwood % 10x10m
OTHER Percent of other cover % 10x10m
AG Percent of accessible ground (bare ground and litter) % 10x10m
GV Percent of ground vegetation (grass and forbs) % 10x10m
Structure <1.3 m
GRASS * Percent of grassland % 50m radius
REGEN20 * Percent of regeneration (trees < 1.3m) % 20x20m
WP20 dPre;;r?ent of juniperus, berry bushes and rhododen- % 20x20m
VEGH Ground vegetation height cm 10x10m
PATCH Ground vegetation pattern: 1 = homogeneous, 2 = 13 10x10m
clumped, 3 = patchy
Structure > 1.3 m
EDGE Edge presence Yes/No 50m radius
FOR™ Percent of forest % 50m radius
COMPT Proportion of coniferous and deciduous tree: 1= only
deciduous, 2 = mostly deciduous, 3 = mix, 4 = mostly 1-5 50m radius
coniferous, 5 = only coniferous
BUSH * Percent of bush % 50m radius
CANOP * Percent of canopy (>5m) % 20x20m
SHRUB * Percent of shrub (1.3m < x <5m) % 20x20m
Condition
WET50 * Sqill wetness assessment from 1 = dry to 4 = muddy 1-4 50m radius
SOi
GRAZ * Pastlure intensity from 1 = no pasture to 5 = intense 1-5 50m radius
grazing
NSOIL \?eo::/r;g:tr;lmeen;gicl)ntent index from 1 = very poor to 5 1-5 20x20m
WET20 * Soil wetness index from 1 = dry to 4 = moist soil 1-4 20x20m
MOIST Soil volumetric water content (moisture) VWC 10x10m
HARD Soil penetrability (hardness) kg/cm? 10x10m

* Variables for which we also calculated the median absolute deviation to compose the
category “heterogeneity” for the model selection at the landscape scale.
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Table 2 Remote sensed variables (RSD) distributed into the categories used for model
selection. The “mineral” category was used only in the landscape scale models.

Variable Description Unit Source

per category

Climate + Topography

PREC57 \I}/L(T;)n summer precipitation (May- mm Worldclim

PREC122 ('\:"e‘arﬁg;f‘;"e?ﬁ‘ra‘;;?Cipitati°” (De- mm  Worldclim

TAVES57 (A,\‘/I’E;agfl %“mmer temperature °C  Worldclim

TAVE122 'g‘gﬁ]rsngV‘e’)iS:ﬁ;s)r“perat“re (De- °C Worldclim

ALT Elevation ma.s.| DEM

SLOPE Slope degree DEM

NORTH Northness (cosine of aspect) DEM

SOLRAD36 Solar radiation (March-June) W*h/m? DEM

Structure < 1.3 m

MEAD * Percent of meadow % Swiss land use statistics
PAST * Percent of pasture % Swiss land use statistics
UNPROD * Percent of unproductive land % Swiss land use statistics
GRASS &gﬁ%ﬁ?;g?;ﬂgn&\fgﬁ%g % Swiss land use statistics
Structure > 1.3 m

BUSH Percent of bushes % Vector 25

OPEN * Percent of open forest % Vector 25

DENS * Percent of dense forest % Vector 25

FOR * gr?gcgrétNoé ;‘orest (sum of OPEN o Vector 25

LTREE Treeline length % Vector 25

DLTREE Distance to the treeline % Vector 25

NBTREE Number of solitary trees n Vector 25

Mineral

LIME Percent of limestone bedrock % Vector 25

SCREE Percent of scree % Vector 25

ROCK Percent of rock % Vector 25

ANTHRO Percent of anthropogenic infra- o Vector 25

structures

* Variables for which we also calculated the standard deviation to compose the category
“heterogeneity” for the model selection at the landscape scale.
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Table 3 Candidate models retained in the AAICc < 2 set. For the variable description
see Tables 1 and 2. If “01” is added to a name, the variable was set as a binary factor at

;hl‘ls I\S/I(;ag:is set for the home range scale about occurrence probability with FD, RSD and
both.
Rank Models on occurrence probability K Deviance AICc AAICc Weight adjR?
A.Field data
1 BUSH + EDGE + PATCH + VEGH 6 99.26 11232 O 0.436 0.263
2 BUSH + PATCH + VEGH 5 102.02 11275 044 035 0.234
3 PATCH + VEGH 4 105.24 113.74 142 0.214 0.194
B. Remote sensed data
1 ALT + MEADO1 4 1139 12239 O 0.421 0.079
2 MEADO1 3 116.84 123.13 0.74 0.291 0.044
3 ALT 3 116.86 123.15 0.75 0.288 0.0425
C.Combined model
1 ALT + EDGE + MEADO1 + PATCH+ VEGH 7 9584 11126 O 0.186 0.311
2 ALT+ EDGE + PATCH + VEGH 6 99.04 112.09 0.83 0.123 0.256
3 ALT + EDGE + MEADO1 + VEGH 6 99.06 112.12 0.86 0.121 0.266
4 EDGE + PATCH + VEGH + BUSH 6 99.26 11232 1.06 0.11 0.211
5 ALT + MEADO1 + PATCH + VEGH 6 99.34 11238 1.13 0.106 0.282
6 EDGE + MEADO1 + PATCH + VEGH 6 99.56 112.61 1.35 0.095 0.271
7 ALT + PATCH + VEGH 5 1019 11264 1.38 0.093 0.233
8 PATCH + VEGH + BUSH 5 102.02 11275 1.5 0.088 0.234
9 MEADO1 + PATCH + VEGH 5 102.26 113 1.74 0.078 0.246
3.2. Models set for the landscape scale about the density with FD, RSD or both.
Rank Models on estimated density K deviance AICc AAICc weight adjR?
A.Field data
1 NSOIL + WET20 + VEGH 5 89.38 100.85 0 0.384 0.201
2 NSOIL + WET20 + GRAZ 5 89.66 101.12 0.27 0.336 0197
3 NSOIL + WET20 4 92.52 101.48 0.63 0.281 0.152
B. Remote sensed data
1 OPFOR + PREC57 + SLOPE 5 84.96 96.43 0 1 0.269
C.Combined model
1 LIME + NSOIL + WET20 5 84.44 95.91 0 1 0.277
3.3 Models set at the landscape scale about the population trend and only with RSD
variables.
Rank Models on population trend K deviance AICc AAICc weight adj R?
Remote sensed data
1 OPEN + PAST + UNPROD 7 36.89 51.67 0 0.602 0.899
2 PAST + UNPROD 6 39.92 52.5 0.82 0.398 0.890
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Table 4 Regression coefficient, standard error, P value and importance of the variables
in the conditional averaged models from the AAICc < 2 set.

4.1. Values for the occurrence probability models at the home range scale according to

FD, RSD or both

Averaged model: occurrence probability

Response variable Coefficient Standard error P variable importance
A.Field data

(Intercept) -0.183 0.423 0.668

Bush 0.459 0.254 0.075 0.79

Forest edge (1) 0.85 0.517 0.106 0.44

Patchiness 0.603 0.268 0.027 1

Vegetation height -0.664 0.268 0.015 1
B. Remote sensed data

(Intercept) 0.193 0.245 0.437

Elevation 0.401 0.229 0.084 0.71

Meadow (1) -1.106 0.644 0.09 0.71
C.Combined model

(Intercept) -0.218 0.46 0.639

Elevation 0.479 0.258 0.067 0.63

Forest edge (1) 0.949 0.537 0.082 0.63

Meadow (1) -1,286 0.734 0.084 0.59

Patchiness 0.556 0.278 0.049 0.88

Vegetation height -0.693 0.277 0.014 1

Bush 0.459 0.254 0.075 0.2
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4.2 Results for the models about estimated density at the landscape scale with FD, RSD

or both.

Averaged model: estimated density

Response variable Coefficient Standard error P variable importance
A.Field data

(Intercept) 1.9 0.096 < 0.001

Soil nutrient content -0.27 0.122 0.032 1

Soil wetness 20 0.318 0.119 0.01 1

Vegetation height -0.168 0.098 0.094 0.38

MAD grazing intensity 0.169 0.103 0.1 0.34
B. Remote sensed data

(Intercept) 1.9 0.091 < 0.001

Open forest 0.201 0.093 0.036 1

Precipitation (5-7) 0.304 0.096 0.003 1

Slope 0.243 0.095 0.014 1
C.Combined model

(Intercept) 1.9 0.09 < 0.001

Limestone 0.267 0.094 0.007 1

Soil nutrient content -0.342 0.113 0.004 1

Soil wetness 20 0.293 0.112 0.012 1

4.3 Values for the model at the landscape scale about population trend with RSD.

Averaged model: population trend

Response variable Coefficient Standard error P variable importance
(Intercept) 2,065 0.096 < 0.001

open forest -0.033 0.019 0.087 0.64
pasture 0.053 0.02 0.008 1
unproductive land 0.057 0.02 0.004 1
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Figure legends

Fig.1 Map of the study area showing: the selected 47km? and their respective classifica-
tion regarding modelled density and trend, the 105 additional km? used population trend
models and the 2 biogeographic regions considered.

Fig. 2 Schema explaining the field data sampling on a km?. The 8 200x200m blue quad-
rats are the mapped ones. The 2 circled are the ones used for the home range analysis:
in green the presence and in red the pseudo-absence, which were chosen according to
the Ring Ouzels observations (yellow dots). The zoom on a quadrat shows the different
reference areas used for habitat mapping: 50m radius in green; in orange, the 20x20m
plot in which ground cover variables were sampled in two diagonal subplots of 10x10m,
the central plot (A) was mapped in the 8 quadrats while the offset one (B) was only
sampled on the 2 presence/absence quadrats.

Fig. 3 Schematic representation of the different fitted models according to the scales,
the responses variables and the sets of the environmental factors. In green, the 7 types
of models built in this study.

Fig.4 Plots of estimates from the conditional averaged model with FD for the two varia-
bles with a significant effect according to occurrence probability, at the home range scale.
The 95% credible intervals are in grey around the regression line and the red dashed
lines correspond to the neutral selection: above the selection is positive and negative
below.

4.1 Shows the relation with the ground vegetation height in cm and 4.2 with the ground
vegetation patchiness from 1(homogeneous) to 3 (patchy).

Fig. 5 Plots of estimates from the conditional averaged model with RSD for the three
variables with a significant effect according to estimated population density, at the land-
scape scale. The 95% credible intervals are in grey around the regression line.

5.1 Shows the relation with the precipitation amount during the breeding season in mm,
5.2 with the proportion of open forest cover in % and 5.3. with the slope steepness in
degrees.

Fig. 6 Plots of estimates from the conditional averaged model with RSD and FD (com-
bined) for the three variables with a significant effect according to the estimated popula-
tion density, at the landscape scale. The 95% credible intervals are in grey around the
regression line.

6.1 Shows the relation with the soil nutrient content from 1 (very poor soil) to 5 (very
fertile soil), 6.2 with the soil wetness form 1 (dry soil) to 4 (very moist soil) and 6.3. with
the proportion of limestone bedrock in %.

Fig. 7 Plots of estimates from the conditional averaged model for the two variables with
a significant effect according to the population trend, at the landscape scale. The 95%
confidence intervals are in grey around the regression line.

7.1 Shows the relation with the proportion of pasture in % and 7.2 unproductive land in
%.
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Fig. 4
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Fig. 5
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Fig. 6
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Additional Supporting Information

Appendix A. Maps with the observation points, the modelled density and the popula-
tion trend obtained from the Swiss Ornithological Institute (SOI)

Appendix B. Histograms of the 3 variables taken in account to stratify and select the
47 km? within the Atlas and MHB sets

Appendix C. Descriptive statistics of the explanatory factors and list of the indicator

plants
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Appendix A Maps with the observation points, the modelled density and the population
trend obtained from the Swiss Ornithological Institute (SOI)

Observations (May-June)

0 50 100 km

Precise points

Fig. A.1 Precise observation points of Ring Ouzels for the period 2008-2017 and during
the breeding season (May-June). This data come from the national surveys (Atlas and
MHB) and from observations submitted on the ornitho.ch platform.
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Fig. A.2 Modelled density (number of territory/km?) for the period 2013-16 (from Knaus
etal. 2018). Models are based on the estimated density from Atlas surveys, but corrected
for detection probability and spatial autocorrelation, using land cover as predictors (see

Guelat & Kery 2018).

W4

LA
: .
2 e ( &
——

%7

) o :
Ve g
’ 3 7

A
= >"”'- b

25 )
< population trend

L I duwary . M <=5

/ Vi =) SR i -5--3

., 7 L 21 % ; o d  EPR
5 Ao NN 0 100 200km [ 1-3

o N 3

Fig. A.3 Ring Ouzels’ population trend according to the difference between the modelled
densities for the Atlas periods 1993-96 and 2013-16.
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Appendix B Histograms of the 3 variables taken in account to stratify and select the 47
km? within the Atlas and MHB sets
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Fig. B.1 Frequency of km? according to their mean elevation
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Fig. B.2 Frequency of km? according to the modelled density value. The vertical red line
symbolizes the threshold value (median = 4) used to define the two strata: low and high
density. Squares with density <2 were not considered

number of km2
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Fig. B.3 Frequency of km? according to the population trend and in red the threshold
value (-1) used to define the two strata : declining and stable/increasing population.
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Appendix C Descriptive statistics of the explanatory factors and list of the indicator

plants

Table C.1 Habitat variables sampled in each km?, distributed into categories used for
model selection. For the home range analysis, the mean + SD value are calculated, ex-
cept for the edge presence/absence considered as a factor. For the landscape scale, the
median + MAD are computed. Marginal variables (>90% of O values) are in italics. The
number 10, 20 or 50 after some variable corresponds to the reference area.

Habitat predictors

(0:1 counts)

Mean * standard deviation

Median + median absolute deviation

2

per Category Presence plots Absence plots km
n=45 n=42 n =47

Ground cover
snow 00 00 0+0
moss 3.2145 4+58 00
regeneration 10 14+14 1.6+25 0.8+1.1
woody plants 10 8.1+ 14.1 4.9+96 12+1.9
stems 1+0.9 0.9+0.9 0.8+1.1
mineral 32+27 3.3+x55 1.5+£22
dead wood 3.3+34 32+3 1.2+1.9
other 0x1 0x1 0zx0
AG 176 +£14.9 14.5+14.3 9+3.3
GV 62 +22.3 67.4 £24.8 68.5 £ 20.8
Structure <1.3 m
grassland cover 49.8 + 28.6 53.7 £ 31 60 + 29.7
regeneration cover 20 2.8+3.6 31+47 1+15
woody plants cover 20 12.4 +20.8 6.6 +11.7 1.5+£22
vegetation height 15.9+7.3 21.9+11.2 19.8 +6.7
patchiness 2104 1.8+£0.5 22+0.7
Structure >1.3 m
edge (12:33) (20:22) 1+0
forest cover 41+24.8 39.9+311 2751222
bush cover 12.5+184 6.4+84 5+7.4
canopy cover 21.2+194 23+24.8 8.5+12.6
shrub cover 54+8.5 7.7+116 00
Tree composition - - 45+0.7
Condition 2.8+0.5 27+05
soil wetness 50 27+1.1 26+1.2 3+0
grazing intensity 3+0.6 3+0.6 3+1.5
soil nutrient content 2.8+0.6 2.8+0.6 3120
soil wetness 20 514.4 + 326.9 524.4 + 306.2 30
soil moisture 07104 0.7+£0.3
soil hardness 00 00 -
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Table C.2 Environmental factors extracted from remote sensed data for each pres-
ence/absence quadrat and km? and displayed according to the categories used for the
model selection. For the statistics, the mean + SD is calculated for each variable on both
scales. Variable with (0:1 counts) were transformed as binary in the analysis concerned.

Mean * standard deviation

Mean * standard deviation

Habitat predictors (0:1 counts) (0:1 counts)
per Category presence plots absence plots km?
n =45 n =42 n =47 n=152
Topography +
Climate
precipitation (5-7) 150.7 £ 39.4 148.8 £+ 40.2 150.4 + 39.5 153.6 +41.2
precipitation (12-2) 104.1 £ 22.5 101.1 £ 23.6 103.3+22.9 104.7 £ 25.2
temperature (5-7) 85+1.3 9+1.3 88+14 80.7+17.6
temperature (12-2) -43+0.9 -3.9+£09 -4+£09 -455+12.4
elevation 1712.3+211.3 16243 +217.9 1660.2+223.3 1781.9+303.9
slope 23.4+6.5 21.8+7.1 2395 251+6.5
northness 0+0.6 01+£0.6 0+£04 0+£04
. + + + +
soarradiation 6)  Googon T eoasd . Sorord . 502008
Structure <1.3 m
meadow 0+0.1(41:4) 0.1+£0.1(32:10) 0.1+01 0+£0.1
pasture 0.3+£0.3 0.3+£0.3 04+0.2 04+0.2
unproductive land 0.1+0.1(34:11) 0x0.1(35:7) 0+0 0.1+0.1
grassland 04+£03 04+£03 04+£0.2 05+£0.2
Structure > 1.3 m
bush 0+0.1(37:8) 0+ 0 (36:6) 00 0+£0.1
dense forest 0.3+£0.3 04+£03 0.3+£0.2 0.2+£0.2
open forest 0.1+£0.2(34:11) 0.1+£0.2(35:7) 0zx0.1 0+0.1
forest 04+0.3 04+0.3 0.3+0.2 0.3+£0.2
treeline length 272.5 + 206.6 311.2 £ 233.1 6497.9 £ 34721 -
distance to the treeline 107.6 + 188.5 101.9 £+ 167.9 125+ 147.2 307.1 £ 469.8
number of solitary trees 4.2 +4.9 3.3+3.9 80.6 £41.7 -
Mineral
lime bedrock - - 02+03 0.2+0.3
scree - - 0+0 0.1+£0.1
rock - - 0+0 0.1+£01
anthropogenic area - - 0+ 0(33:14) 0+0(116:37)
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Table C.3 List of the indicator plants used to determine the soil wetness (Landolt’s H)
and nutrient content (Landolt’s N)

Species Subalpine Alpine Month flowering Type Landolt's H Landolt's N
Achillea millefolium X (x) 6-9 dry 2 3
Anthericum liliago (x) 5-6 dry 1+ 2
Arctostaphylos uva-ursi X X 4-7 dry 2 2
Aster alpinus X X 6-8 dry 2 2
Avenalla flexuosa X (x) 6-8 dry 2+w 2
Campanula rotundifolia X (x) 5-9 dry 2 2
Dianthus sylvestris X (x) 6-7 dry 1 2
Echium vulgare X 5-10 dry 2 3
Erica carnea X (x) 3-6 dry 2 2
Euphorbia cyparissias X X 4-6 dry 2 2
Globularia cordifolia X X 5-7 dry 2w+ 2
Juniperus communis X X 5-8 dry 2(w) 2
Oxytropis campestris (x) X 7-8 dry 2 2
Plantago lanceolata X (x) 4-9 dry 2w+ 3
Plantago media (x) 5-7 dry 2 3
Rumex sculatus X 6-7 dry 2 2
Sedum album X (x) 6-9 dry 1w 2
Sempervivum montanum X X 7-8 dry 2 2
Sesleria caerulea X X 3-8 dry 2w 2
Silene nutens X (x) 6-7 dry 2 2
Sorbus aria X 5 dry 2w 2
Trifolium montanum X (x) 5-7 dry 2w 2
Veronica fruticans X X 6-7 dry 2 2
Abies alba (x) 5 humid 4w 3
Aconitum napellus X X 6-8 humid 4w+ 5
Alnus incanalviridis X (x) 2-6 humid 4w+ 4
Bartsia alpina X X 6-8 humid 4w+ 3
Cirsium oleraceum (x) 6-9 humid 4w 4
Filipendula ulmaria X 6-8 humid 4w+ 4
Parnassia palustris X X 7-9 humid 4w+ 2
Petasites albus/hybridus X 3-5 humid 4w+ 4
Petasites paradoxus X X 4-5 humid 4w 3
Phleum alpinum X X 7-8 humid 4w 2
Pinguicula alpina/vulgaris X X 5-7 humid 4w+ 2
Polygonum bistorta X 5-7 humid 4w 4
Rumex acetosa X 5-8 humid 3w 4
Rumex alpestris X (x) 7-8 humid 3+w 4
Rumex alpinus X (x) 7-8 humid 3+w 5
Soldanella alpina X X 5-7 humid 4w 3
Thalictrum aquilegiifolium X (x) 5-7 humid 4w+ 3
Trollius europaeus X (x) 5-6 humid 4w+ 3
Urtica dioica X (x) 6-9 humid 3+w+ 5
Viola biflora X X 5-8 humid 4w 4
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