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ABSTRACT

Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental
conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic
machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but
the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability
has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria
(resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential
effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries
for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the
validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection
criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to
body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially
dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed
regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different
clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a ‘subsampling procedure’ was also
applied, in which random subsamples of different sample sizes were taken from each original data set and successively
analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different
degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large
clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12–20% larger
than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the
relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the
data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often
appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for
a given relationship. Depending on the species included, results could differ dramatically, especially with small sample
sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding
results (even if seemingly significant) with small sample sizes.
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I. INTRODUCTION

Rate of metabolism is highly variable in endotherms,
reflecting not only body mass but also various internal states
(e.g. postabsorptive versus postprandial, pregnant or lactating
versus reproductively inactive), responses to environmental
conditions such as ambient temperature or season, and
behaviour (McNab, 1997). Confronted with this variability,
biologists have long realized that meaningful comparisons
of the rate of metabolism between different endotherms
must be based on measurements meeting certain restrictive
criteria (Benedict, 1938; Kleiber, 1961; Speakman, McDevitt
& Cole, 1993; McNab, 1997). Basal rate of metabolism
(BMR) is the rate of metabolism of a postabsorptive,
non-reproducing adult endotherm that maintains a normal
body temperature and rests at a thermoneutral temperature
during a major inactive phase of its daily cycle (McNab,
1988a, 1997, 2012). It represents the minimal rate of
energy expenditure normally compatible with temperature
regulation. It is predicted to be subject to selection,
notably because of its potential links to rates of energy use
and allocation to various functions, including growth and
reproduction (McNab, 1997, 2012; Glazier, 2015), or to the
maximal or sustained maximal rates of energy expenditure
(e.g. Speakman, Krol & Johnson, 2004).

BMR is regarded as a central measure in the physiological
ecology of endotherms and is surely one of the most
widely measured physiological parameters. As a measure
of the minimal intensity of the metabolic machinery of

a normothermic endotherm, or as a proxy for energy
expenditure or requirements of endotherms, it has been
included in a vast number of comparative analyses aimed
at explaining the intra- or interspecific variance observed
in diverse aspects of endotherm biology. When endotherms
are considered, BMR is also given a central place in the
Metabolic Theory of Ecology (MTE), which provides a
formal framework explaining how metabolic rate controls
various life-history attributes as well as population or
ecosystem processes (Brown et al., 2004). This ‘metabolic
pacemaker’ concept has recently been evaluated by Glazier
(2015), who argued that, while some biological processes
may indeed be controlled by rate of metabolism, others may
also be co-regulated with it or may even drive it.

Many databases have been published previously for the
BMR of mammals or birds (mammals: e.g. Lovegrove,
2000; McNab, 2008a; Sieg et al., 2009; White, Blackburn
& Seymour, 2009; birds: e.g. McKechnie & Wolf, 2004;
McNab, 2009), but discrepancies exist between them even
after exclusion of inevitable differences due to publication
date. Inclusion of a published value as a BMR estimate
requires an assessment by the compiling author of the
degree to which the criteria for BMR measurement had
been met and of the appropriateness of many other features
of the protocol (e.g. origin and handling of the animals,
sample size, instruments used, calculations). Yet combining
several published databases for a comparative analysis can
potentially eliminate uniformity in selection criteria if the
original papers are not considered in detail. The potential
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consequences of the required choice of criteria for BMR
data selection have often remained unstated. Indeed, given
the many different databases that are currently available
for BMR, one might question what difference it makes to
use one set rather than another. For birds, McKechnie &
Wolf (2004) have shown that different scaling equations for
BMR may be obtained depending on the severity of data
selection. More generally, databases including descriptions
and/or evaluations of the conditions under which the original
data were obtained have been emphatically recommended
(Borries et al., 2016).

This review has two goals. First, it provides a com-
prehensive and fully referenced database of mammalian
BMR estimates collected exclusively from primary sources,
including an evaluation of the degree to which the standard
criteria were met in each case. This will facilitate selection
of appropriate BMR estimates for comparative purposes.
It is not claimed that the database provides an evaluation of
the general quality of the measurements conducted, as some
of the studies cited were not originally intended to provide
BMR estimates, although their results could be exploited for
this purpose. For example, many authors chose to avoid the
difficulty of ensuring that their animals were postabsorptive
and/or were really monitored in the thermoneutral zone.
They accordingly reported their measurements as resting
metabolic rate (RMR).

Second, this review seeks to determine whether the process
of selecting BMR data can influence results regarding
relationships with various other parameters in comparative
analyses. With that aim in mind, specified selection criteria
were applied to extract alternative data sets from the new
BMR database. These data sets either exclusively contained
values judged to be acceptable BMR estimates or also
included values judged to be unreliable BMR estimates.
The data sets were then used for analyses in two biological
contexts, both of which are the subject of ongoing studies
and controversies: (i) the scaling of BMR to body mass, and
(ii) the relationship between brain mass and BMR.

The scaling of BMR to body mass has been the subject
of many studies (e.g. Lovegrove, 2000; Symonds & Elgar,
2002; White & Seymour, 2003, 2004, 2005; McNab, 2008a;
Sieg et al., 2009; Capellini, Venditti & Barton, 2010; Clarke,
Rothery & Isaac, 2010), with particular emphasis on the
effects of accounting for various confounding variables,
including zoogeographical, ecological, behavioural, and
physiological factors. The relationship between brain mass
and BMR has also been a focus of interest for several
decades (Martin, 1981; McNab & Eisenberg, 1989; Isler
& van Schaik, 2006a,b, 2009; Barton & Capellini, 2011;
Isler, 2011; Weisbecker & Goswami, 2014), particularly
because the brain’s rate of energy expenditure is very
high, accounting for a substantial proportion of the overall
energy expenditure of the organism (Niven & Laughlin,
2008). Encephalization is hence potentially associated with
increased maintenance costs reflected in greater energy
turnover (Isler & van Schaik, 2006b). Herein, these two
contexts are used as case studies to examine the potential

effects of applying different selection criteria for compiling
BMR data.

The two examples selected for analysis differ appreciably
in the strength of the relationship under consideration.
Provided that a sufficiently broad range of body mass is
considered in an analysed assemblage of species, body mass
always explains a very large proportion of the variance in
BMR (e.g. r2 > 0.9 with assemblages covering all Mammalia;
Lovegrove, 2000; McNab, 2015). By contrast, BMR explains
at best only a small proportion of the variation in brain mass
(e.g. r2 ≤ 0.2; Isler & van Schaik, 2006b; Sobrero et al., 2011).
We hypothesized that the results of a comparative analysis
should be particularly dependent on the data-selection
procedure when the strength of the studied relationship is
weak and when sample size is small. We therefore performed
comparative analyses with species assemblages of different
sample sizes (Mammalia, the separate sub-classes Eutheria
and Metatheria, as well as individual orders). This was done
in order to compare results obtained with data sets that
were either restricted to accepted BMR estimates or also
included BMR values considered to be unreliable. Using a
subsampling approach, we also illustrate the variability in
results that can occur when species are gradually added to
a database, both when initially compiling a data set and as
data become increasingly available in the scientific literature.

II. MATERIALS AND METHODS

(1) The BMR database

A total of 1739 values for the metabolic rate of 817 species
of mammals were extracted from published literature, using
primary sources wherever possible, and entered into the
BMR database (see online Tables S1 and S2). Among
the 946 original publications involved, 95% were read
and their metabolic values were evaluated. Entries for
which the original publication was unavailable (N = 57),
or those corresponding to data originally cited as ‘personal
communication’ or as ‘unpublished’ (N = 28) were identified
as such. Values were primarily entered under species names
according to Wilson & Reeder (2005), although taxon names
used by the original authors were also noted.

Each entry provides the mean metabolic value most closely
reflecting a basal rate and the corresponding mean body mass
(m) for the animals measured in each publication. When
several values were given in a single paper, corresponding
to different subspecies or populations, they were entered
separately. However, when different seasonal values were
available for the same population, a value corresponding to
a season of higher resource availability was preferred (i.e.
‘summer’ in temperate or boreal regions, but see Section II.2d
for issues regarding reproductive status in females; McNab,
2008a), unless important BMR criteria were omitted for that
value. When values were given separately for males and
females (e.g. due to substantial sexual dimorphism), averages
between sexes were calculated for m and BMR. The following

Biological Reviews 93 (2018) 404–438 © 2017 Cambridge Philosophical Society



Comparative analyses of basal rate of metabolism 407

information derived from the original publications was listed
or coded for each entry: (a) sample size, (b) whether or
not a graphical representation of the rate of metabolism
as a function of ambient temperature was available in the
paper, or (b1) whether such a representation is available in
some other publication for the same species, (c) whether the
analysis demonstrated convincingly that the measurements
were conducted in the thermoneutral zone, and whether it
can be accepted that the measured animals were resting (d)
and postabsorptive (e). The authors’ indications regarding
whether the animals were measured during a major resting
phase of their daily cycle (f), were adults (g) and, for females,
were non-reproductive (h) were listed. Additional potentially
useful details were also noted concerning the individuals
measured (i–l), the experimental set-up and protocol (m,
n) and the analysis of the measurements (o–q). How these
details were coded is described in detail in Table S1.

Based on an overall assessment of how well the BMR
criteria (c–h) were met (Ecrit , see Table S1), as well as of the
additional problems encountered (i–q), an overall four-level
evaluation (= E) was assigned to each entry (Table S1): E = 1
for values meeting the requirements of BMR and devoid of
technical limitations reducing the reliability of the estimate;
E = 2 for values marginally acceptable as BMR estimates
due to one or more criteria being only marginally met or
due to technical problems; E = 3 for poor estimates of BMR
due to many criteria being only marginally met or to one
criteria clearly not being met or due to technical problems
that could have caused a significant deviation; and E = 4 for
values which are unacceptable as BMR estimates. For use in
comparative analyses, this evaluation was then translated into
a two-level factor named ‘reliability’, distinguishing values
referred to hereafter as ‘accepted’ (E = 1 or 2) and ‘rejected’
(E = 3 or 4). The frequency distribution of the reliability of
entries for different clades is provided in Figure S1.

(2) Concerns regarding criteria for BMR

The evaluation (E) assigned to each entry in the database was
complicated by at least three major problems, two of which
directly concern the criteria for BMR. First, the difficulty
of meeting all BMR criteria is variously affected by specific
problems associated with each taxonomic or ecological group
of species, and the methodological information required for
a complete evaluation is therefore taxon-specific. Yet the
methodological information provided by the authors was
often insufficient for a complete evaluation of the metabolic
values as BMR estimates. Second, using a protocol that
does not respect or only marginally meets one particular
criterion leads to deviations that are also taxon-specific.
Third, methodological aspects other than the BMR criteria
can also influence the reliability of a metabolic value as a
BMR estimate. These include sample size, whether a graph of
the rate of metabolism as a function of ambient temperature
was provided or was made available for the same species
in another study, respirometry techniques, precision of the
results, and other aspects included in Table S1.

(a) Postabsorptive state

The requirement for a postabsorptive state is one typical
example of a BMR criterion that requires taxon-specific
efforts for realization. Mammals typically respond to feeding
by a 25–50% increase in rate of metabolism (Secor, 2009).
The time to reach a postabsorptive state varies both among
and within species, depending notably on body mass and
on the amount and type of food ingested (Secor, 2009). A
fasting duration of more than 48 h was necessary to achieve
a postabsorptive state in the 35.5 kg carnivore Canis lupus
(Okarma & Koteja, 1987). By contrast, the specific dynamic
effect of feeding lasted only about 6 h in the 9.8 g bat
Lasiurus seminolus (Genoud, 1993), 4 h in the 64 g rodent
Phyllotis darwini (Nespolo, Bacigalupe & Bozinovic, 2003b),
while in shrews even small amounts of food given during
measurement runs had little effect on the rate of metabolism
(Lindstedt, 1980; McNab, 1991). In most species, however,
no specific information is available regarding the time
required to achieve a postabsorptive state, and experiments
actually measuring the duration of the specific dynamic effect
of feeding would be very welcome.

Of particular concern are those mammals feeding on
vegetative parts of plants (e.g. Artiodactyla, Macropodidae
and Lagomorpha). This feeding strategy usually involves
fermentation and requires a very long gut transit time,
which increases as body size increases. For example, a
postabsorptive state was reached after a fast of 48 h in a
38 kg Antilocapra americana (Wesley, Knox & Nagy, 1973)
and after more than 4 days in an Ovibos moschatus weighing
approximately 200 kg (Nilssen, Mathiesen & Blix, 1994).
Individuals of the latter species have a more than doubled
rate of metabolism after eating. The question has been raised
(Blaxter, 1989; McNab, 1997) whether it is even possible to
measure BMR in species relying on fermentation to process
plant matter (such as ruminants), because fermentation may
rule out attainment of a postabsorptive state before the
subjects are undergoing severe starvation. For this reason,
White & Seymour (2003) discarded artiodactyls, lagomorphs
and macropodid marsupials from their analyses. However,
measurements done on artiodactyls fasted for variable
durations have shown that the RMR tends to stabilize after
an initial decrease, and a respiratory quotient compatible
with a postabsorptive state (i.e. approaching 0.7) can be
reached well before starvation (Silver et al., 1969; Renecker
& Hudson, 1986; Nilssen et al., 1994; see also Williams et al.,
2001a; Ostrowski, Mésochina & Williams, 2006a).

We therefore accepted values as reliable BMR estimates
if the authors either provided information that strongly
suggested that their animals were postabsorptive, or
actually estimated the length of time required to reach a
postabsorptive state. For all other entries, we evaluated the
reliability of the postabsorptive state criterion by establishing
rough scales based on body mass and diet. To build
these scales, we compiled experimentally measured fasting
durations necessary to reach a postabsorptive state in
different species (Table S3). For species whose diet does
not consist mainly of vegetative parts of plants, the following
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fasting durations were considered to be necessary: <100 g,
1–2 h; 100–350 g, 2 h; 350–1000 g, 3 h; 1–10 kg, 4 h;
10–100 kg, 6 h; and >100 kg, 12 h. For species whose
diet mainly consists of vegetative parts of plants, the
corresponding durations were: <100 g, 2–3 h; 100–350 g,
4 h; 350–1000 g, 6 h; 1–10 kg, 12 h; 10–100 kg, 24 h; and
>100 kg, 36 h.

(b) Rest

A resting state is another critical requirement for BMR
measurements. Certain small mammals such as shrews are
renowned for their restlessness. Yet even with shrews it
is usually possible to obtain metabolic rates for resting
individuals (e.g. Sparti & Genoud, 1989; McNab, 1991),
if an open air-flow respirometer with continuous recording
of the outlet oxygen concentration is available. A quiet state
is difficult to reach with ungulates, which are also often
reluctant to lie down. Yet the metabolic rate measured on
a standing ungulate can represent up to 150% of the lying
resting rate (Wesley et al., 1973; Renecker & Hudson, 1986).

Sleep and the timing of metabolic measurements in a 24 h
cycle are also fundamental issues. Benedict (1938) proposed
that measurements should be done during a major resting
phase of the daily cycle for the sake of comparability. Aschoff
& Pohl (1970) and Kenagy & Vleck (1982) showed that the
resting rate of metabolism undergoes a circadian rhythm
and that the difference between minimal rates of metabolism
measured during the ‘normally active’ and ‘normally resting’
phases varies markedly among species. Although a circadian
rhythm may not be present in all mammals (McNab,
2008a), in some, such as small primates, this difference
may reach 30% (Genoud, 2002). The requirement for
measurements during a major inactive period of the daily
cycle is therefore usually part of the definition of BMR (e.g.
McNab, 1997, 2008a; Lovegrove, 2000; White & Seymour,
2003). In our compilation, we assumed that measurements
were done during the daytime unless specific information
was provided by the authors. Thus, for nocturnal species
estimates were considered as fulfilling this requirement even
without any specific statement concerning the timing of
the measurements, whereas for diurnal species an explicit
statement that measurements had been made during the
night was required.

However, mammals are often asleep during their major
resting phase (e.g. Lesku et al., 2006), and rate of metabolism
can be reduced by as much as 10–15% during sleep (Shapiro
et al., 1984). Accordingly, BMR measurements in man are
typically done on awake subjects [e.g. Owen et al. (1987)
and Mifflin et al. (1990), listed in our database]. In animals,
on the other hand, sleep is not usually excluded, partly
because one cannot force an animal to stay awake and
partly because the sleeping patterns of the subjects measured
during respirometry tests have almost never been assessed.
Benedict (1938) identified this problem but suggested that
measurements should be made during a major inactive
phase even if the animals were asleep at that time. In
any case, sleep may be an important cause of unexplained

variation in the available BMR estimates, as there was
insufficient information to evaluate this issue. In addition,
we regarded any indication of the violation of quiescent,
motionless subjects as hampering the reliability of a BMR
value. In particular, we noted stressful conditions, or, for
polyphasic species typically resting only for short periods (e.g.
shrews, rodents), whether measurements were discontinuous
or averaged over longer time periods. Estimates for ungulates
were considered reliable only if the animals were lying down.

(c) Thermoneutrality

Whether a given value was obtained within thermal
neutrality is also a taxon-dependent concern. A complete
metabolism–temperature curve is obviously necessary to
define the zone of thermoneutrality for any given species.
This is absolutely required for mammals weighing less than
about 1 kg, in which the lower critical temperature (or lower
limit of the thermoneutral zone) usually lies well above
ambient temperatures typically occurring in laboratories
and in which the breadth of the thermoneutral zone is
often reduced (Riek & Geiser, 2013). Comparatively, a
full metabolism–temperature curve is of less concern for
larger mammals. It must also be noted that in many species
different thermoregulatory curves were provided by different
authors, suggesting an appreciable degree of intraspecific
variability in the thermoneutral zone. The determination
of a thermoneutral range reported in a particular study
and population can thus hardly be considered as universally
applicable to the species considered, especially if its body
mass is small. Furthermore, the thermoneutral zone may
have to be delimited separately for each sex in species
exhibiting marked sexual dimorphism, and even for each
single individual in highly variable species (McNab, 2000;
McNab & Armstrong, 2001).

(d ) Adult, non-reproductive status

Many papers on the rate of metabolism and temperature
regulation of mammals did not state whether the animals
under study were adult or immature, or male or female.
Sex-specific metabolic values are rarely given. In addition,
the reproductive status of adult females has often been
disregarded. The latter information is especially important
as BMR should preferably be measured during a season of
higher resource availability, which often coincides with a
‘reproductive season’, but a pronounced effect of pregnancy
and lactation on rate of metabolism has been documented in
many species (e.g. Thompson, 1992; Cretegny & Genoud,
2006; Speakman, 2008). Growing juveniles also exhibit rates
of metabolism that differ from those of adults (McNab, 1983,
2002; Wieser, 1984; Hulbert & Else, 2004). For example,
in small mammals rate of metabolism typically overshoots
‘adult’ BMR on a mass-specific scale during the postnatal
growth phase. Accordingly, caution is needed with values
obtained from animals clearly weighing less than normal
adults. Concerns about the adult status of the individuals on
which BMR was measured were noted in the database, but a
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systematic review of age, sex or developmental status was not
possible because of a lack of information in many original
publications.

(e) Intraspecific variation in BMR

A final concern is that BMR shows a large degree of
intraspecific variation both within and among individuals.
Even within a single population in a particular season the
coefficient of variation often exceeds 10% (e.g. Labocha et al.,
2004; Speakman et al., 2004; Cretegny & Genoud, 2006;
Genoud & Christe, 2011). Hence, values obtained with a
small number of individuals should always be considered
as preliminary, although even measurements on a single
individual can be in some cases very valuable, especially
for species that are rare or difficult to handle (McNab,
1997). Different subspecies and populations of many species
have also been shown to exhibit significant metabolic
differences (e.g. McNab & Morrison, 1963; Bozinovic, Carter
& Ebensperger, 2005a; Bozinovic et al., 2009). Furthermore,
BMR shows appreciable phenotypic flexibility, as illustrated
by numerous populations that exhibit seasonal variation in
BMR (Genoud, 1990; Lovegrove, 2005). It is beyond the
scope of the present paper to analyse intraspecific variation,
despite its importance. But our database does provide mean
BMR values for different conspecific populations wherever
possible.

(3) Data sets

Three different BMR data sets were extracted from the
BMR database. In each only a single entry from the BMR
database was used for any species included, which mimics
the procedure generally adopted in interspecific comparative
analyses.

Data set 1: ALL. All species entered in the BMR database were
included in this data set (N = 817 Mammalia), whether
an acceptable BMR estimate was available or not. In
each case, the most reliable metabolic value was selected,
i.e. the one with the smallest integer for the evaluation
criterion E. This is equivalent to the standpoint that a
poor estimate of BMR for a species is better than none.
When several values with identical E were available for
a particular species, the value with a smaller Ecrit was
chosen, or, all else being equal, preference was given to
larger sample size, rates graphed as a function of ambient
temperature to define the thermoneutral zone, open-flow
respirometry permitting continuous recording of oxygen
consumption, and metabolic results stated numerically
(rather than requiring recalculation from graphs). When
two or more entries for the same species were identical
in all aspects of their evaluation, which sometimes was
the case for populations or subspecies studied by the same
author, one of them was chosen randomly.

Data set 2: SELECT . Only accepted BMR estimates (E = 1
or 2) were selected for this data set (N = 549 Mammalia).
SELECT is a subset of ALL.

Data set 3: SPOILED. This data set has the same sample
size as SELECT (N = 549) and contains the same species.
However for those species having more than one entry
in the database (256 out of 549), the SELECT BMR
estimate was replaced by the least-reliable estimate. This
least-reliable BMR estimate was determined by calculating
the absolute differences from the SELECT value for all
entries (accounting for body mass and phylogeny, see
Section II.4) and by taking the entry that was most
divergent from the corresponding SELECT value.

(4) Statistical analyses

Humans and domestic animals were excluded from
consideration. All three complete data sets were used for
analyses of the scaling of BMR to body mass. For analyses
of the brain mass/BMR relationship, the data sets were
reduced to those species for which corresponding data for
brain mass were available. Brain-size data were compiled
from various sources listed in Isler et al. (2008) and Isler
& van Schaik (2009, 2012). For most carnivores, rodents,
and primates, brain mass was estimated from endocranial
volume, while the mass of fresh brains was available for
bats, artiodactyls, and smaller orders. Only adult specimens
were included and, if available, sex-specific values were
averaged to obtain a species mean. Both the scaling of
BMR to body mass and the relationship between brain
mass and BMR were analysed first among ‘large clades’,
i.e. Mammalia, Eutheria and Metatheria. These analyses
were then repeated for order-level clades represented in the
SELECT data set by more than 10 species [orders sensu
Wilson & Reeder (2005): Dasyuromorpha, Diprotodontia,
Carnivora, Chiroptera, Primates; rodents belonging to
the Hystricomorpha, Myomorpha, Castorimorpha and
Sciuromorpha were considered separately; Soricomorpha
and Erinaceomorpha were pooled in Eulipotyphla]. Only
illustrative results of the latter analyses are reported.

Among mammals, variation in BMR, as well as
in body mass and brain mass, contains a significant
phylogenetic signal (Symonds & Elgar, 2002; Capellini
et al., 2010; Kamilar & Cooper, 2013; Rojas et al.,
2013). Phylogenetically informed analyses were therefore
performed using phylogenetic generalized least squares
models (PGLS) with the package Caper (function pgls; Orme
et al., 2012) in R (R Development Core Team, 2012). The
mammalian phylogenetic tree used in all analyses (see online
Nexus File S1) was based on the phylogeny (‘best estimate’
tree) of Bininda-Emonds et al. (2007). Until 2015, we updated
and expanded this tree following more recent sources on the
phylogeny of mammalian clades, especially if they provided
a better resolution of polytomies, contained more species for
which BMR is available, or were based on new molecular
studies (e.g. the molecular phylogeny for rodents of Fabre
et al., 2012). Remaining polytomies were resolved randomly.
Note that for our purpose of comparing the effect of data
reliability, tree accuracy is not crucial as long as one specific
tree is used throughout all analyses. Lambda (a parameter
indicative of the phylogenetic signal in the data) was
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estimated by maximum likelihood in the modelling process.
Critical assumptions of PGLS were checked as follows: with
PGLS, normality of the residuals was examined visually
with a Q–Q plot, and homoscedasticity of the residuals was
checked by plotting model residuals as a function of fitted
values. Deviations from normality revealed by appropriate
tests (e.g. Shapiro’s test) depend heavily on sample size
(Mundry, 2014). This is not necessarily a problem, except
when outliers are present. Outliers corresponding to a
studentized residual >3 were identified and the analyses were
repeated after discarding them. As the results were always
similar in these repeat analyses, they are not reported here.

Absolute rather than mass-specific values of BMR were
used in all analyses. Because both BMR and brain mass scale
with body mass allometrically, body mass, BMR and brain
mass values were log10-transformed before analysis in order
to correct for non-linearity and heteroscedasticity. To control
for the influence of body mass in analyses of the relationship
between brain mass and BMR, ideally all variables should
be measured on the same individuals. However, available
brain mass values were all collected independently of
BMR estimates. In our analyses, we used the body mass
corresponding to the BMR measurements as a covariate.
Although individuals whose brain mass was estimated could
differ both in body mass and BMR from those which had
their BMR measured, this would not be remedied by using
another, independently gathered estimate of body mass for
each species. Using two different body masses when studying
the relationship between two variables depending on body
mass, equivalent to a residual–residual approach, would
also be problematic due to an acute collinearity problem
(Sobrero et al., 2011). Our analyses of the relationship among
brain mass, body mass and BMR rest on the assumption
that, for each species, the reported brain mass is sufficiently
close to that of the conspecifics whose BMR was estimated.
At least, we see no a priori reason to expect a consistent
difference. Collinearity is still an issue in the analyses of the
relationship between brain mass and BMR, as the covariates
body mass and BMR are strongly correlated. We therefore
report variance inflation factors for these models, although
the necessity to control for the effect of body mass precludes
the omission of this covariate from the models.

We tested the effect of reliability on statistical analyses
including BMR using four different approaches. First, we
tested whether unreliable BMR estimates differ significantly
from reliable BMR estimates within the data sets ALL and
SPOILED, which contain both accepted (E = 1 or 2) and
rejected (E = 3 or 4) values. Phylogenetic ANCOVA was
used for this purpose, whereby body mass was included
as a covariate and reliability as a two-level factor. Second,
we tested whether including unreliable BMR estimates in
a data set increased the variance of the model’s residuals.
We compared the variances of the SELECT data set with
either the ALL or the SPOILED data set using Bartlett’s test.
These tests were applied both to the scaling of BMR and to
the relationship between brain mass and BMR. Third, we
would expect that including unreliable values in a data set

decreases the phylogenetic signal in the residuals of a model.
Maximum likelihood estimates of lambda were therefore
compared between the SELECT and the SPOILED data
sets for all examined clades.

Finally, to explore consequences of the interaction between
sample size and reliability of the BMR data set for results of
comparative analyses, we used a subsampling approach,
henceforth referred to as the ‘repeated subsampling
procedure’. This procedure was applied to compare the
results from SELECT and SPOILED data sets across all
mammals. In the context of the scaling of BMR (N = 549
for each data set), subsets of species were sampled randomly
in each of the two data sets compared, and the probability
of a zero slope for the influence of body mass on BMR was
calculated with PGLS. The latter analysis was repeated 100
times with the same subsample size but each time with a
new random selection of species, thus ensuring that in the
subsamples from the SPOILED set, the mean proportion
of unreliable values in the 100 subsamples would be similar
to that of the entire set (47%, or 256 out of 549). This
was done for different subsample sizes (N = 5, 10, 20; and
N = 30–390 in steps of 30). The same procedure was
applied in the context of the relationship between brain
mass and BMR (N = 369, including 200 unreliable values
in the SPOILED set), each of the analyses being done as
described above (PGLS, brain mass being the dependent
variable; body mass and BMR being independent variables).
The probability of a zero slope for the effect of BMR on
brain mass was calculated using a simple model without
the body mass × BMR interaction, the latter effect being
non-significant (see Section III.2). For each data set and
context, the relationship between the calculated probability
and subsample size was analysed using a generalized additive
model (gam) with the package mgcv in R (Wood, 2015). Note
that in context of this subsampling procedure, P values are
regarded as a measure of the observed power of an effect,
but not as probabilities of Type-I error in the strict sense
of hypothesis testing. Therefore, a correction for repeated
testing is not applied.

III. RESULTS

(1) Scaling of BMR with body mass

As expected, the influence of body mass on BMR was
highly significant in all clades studied, while the scaling
coefficient and exponent varied within narrow limits (Table 1
for the large clades). In Mammalia and Eutheria, the scaling
exponent was found to be close to 0.73 for the SELECT set,
with 95% confidence intervals excluding both 3/4 and 2/3.
The estimated lambda value was close to 1 in both cases,
confirming strong phylogenetic structure in the data. In
Metatheria, the confidence intervals of the scaling exponent
of 0.74 included 3/4, there was no phylogenetic signal
in the model residuals (maximum likelihood estimate of
lambda = 0), and the scaling coefficient was lower than in
Eutheria.
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Table 1. Scaling of basal metabolic rate (BMR) to body mass among all mammals, and among Metatheria and Eutheria, using
different data sets for BMR

Clade Parameter ALL SELECT SPOILED

α 0.366 ± 0.127 0.377 ± 0.114 0.487 ± 0.122
Mammalia β 0.737 ± 0.009 0.729 ± 0.010 0.711 ± 0.013

tn−1, P 80.6, <10−15 73.4, <10−15 56.7, <10−15

r2 0.888 0.908 0.855
lambda 0.867 0.906 0.801
N 817 549 549
Outliers 15 12 6

α 0.379 ± 0.039 0.382 ± 0.026 0.453 ± 0.037
Metatheria β 0.746 ± 0.013 0.743 ± 0.010 0.725 ± 0.014

tn−1, P 58.7, <10−15 76.3, <10−15 52.5, <10−15

r2 0.977 0.989 0.976
lambda 0.230 0 0
N 84 70 70
Outliers 1 1 0

α 0.456 ± 0.057 0.455 ± 0.060 0.526 ± 0.067
Eutheria β 0.735 ± 0.010 0.726 ± 0.012 0.714 ± 0.015

tn−1, P 70.9, <10−15 62.4, <10−15 48.8, <10−15

r2 0.874 0.892 0.834
lambda 0.798 0.866 0.731
N 730 476 476
Outliers 8 6 5

N is sample size (number of species). log10BMR = β · log10mass + α, α and β are the allometric coefficient and exponent (±S.E.),
respectively. BMR is expressed in mlO2/h and mass is in g. Results of a t-test for β = 0 are given (t-value and corresponding probability,
P ) as well as r2 and the number of outliers. Lambda is a parameter indicative of the phylogenetic signal in the data. Data sets: ALL = best
(although not necessarily accepted) estimate available for each species in the database. SELECT = best estimate available for those species
of the database which have at least one accepted (evaluation criterion E = 1 or 2) BMR estimate. SPOILED = SELECT data set ‘spoiled’
by less-appropriate values, whenever available (see Section II.3 for further details).

The phylogenetically informed scaling relationships
obtained with the ALL data set were similar to those obtained
with the SELECT set for all three large clades (Table 1).
However, in Mammalia the variance of the residuals found
with the ALL data set was significantly greater than with
the SELECT set (Table 2). A similar tendency was observed
in the Eutheria and in the Metatheria taken separately,
although Bartlett’s chi-squared was not quite significant in
these cases (Table 2). Within the ALL data set, reliability
(‘accepted’ versus ‘rejected’) affected BMR among Mammalia
and Eutheria: in these clades the PGLS ANCOVA including
both body mass and reliability yielded a highly significant
effect of reliability if the non-significant interaction term
body mass × reliability was omitted (Table 3). On average,
rejected BMR values exceeded accepted ones at all body
masses by approximately 12% (Fig. 1). In Metatheria, the
interaction term body mass × reliability was significant, with
rejected BMR values tending to be higher than accepted
ones, especially at large body masses.

The SPOILED data set also yielded results broadly
similar to those of the SELECT set (Table 1). Nevertheless,
consistent differences were found between these two data
sets for all three large clades. The variance of the residuals
obtained with the SPOILED set was significantly larger than
that with the SELECT set (Table 2). In addition, the scaling

relationships obtained with the SPOILED data set typically
yielded a slightly smaller allometric exponent in combination
with a larger allometric coefficient than those obtained with
the SELECT set (Table 1). Finally, the PGLS ANCOVA
performed within the SPOILED data set, and including body
mass as a covariate and reliability as a factor, led to a signifi-
cant effect of reliability in Mammalia and Eutheria, once the
non-significant interaction term body mass × reliability was
removed from the analysis (Table 3). Rejected BMR values
again tended to be higher than accepted ones (by around
20% in Mammalia). For Metatheria, the effect of reliability
was non-significant (Table 3).

When considering the relationship betwen BMR and
body mass, the SPOILED data set mostly led to a weaker
phylogenetic signal in the residuals than the SELECT
data set (Table S4). This was the case for the Mammalia
and Eutheria, as well as for most of the order-level
clades examined, except for Primates. When only BMR
was considered without taking body mass differences into
account, the difference between lambda values obtained
with the SELECT and the SPOILED sets was much less
consistent (Table S4).

Including rejected data occasionally had a larger effect
when more restricted clades were considered. Sciuromorph
rodents provided a straightforward and extreme example of
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Table 2. Test of equality of the variances of the residuals obtained with different data set pairs for the scaling of basal metabolic rate
(BMR) to body mass and for the relationship between brain mass and BMR

Analysis Clade Parameter ALL (1)vs SELECT (2) SPOILED (1)vs SELECT (2)

N 1, N 2 817, 549 549, 549
Mammalia Var1, Var2 0.0321, 0.0268 0.0407, 0.0268

P 0.021 1 × 10−6

N 1, N 2 84, 70 70, 70
Scaling of BMR Metatheria Var1, Var2 0.0092, 0.0062 0.0122, 0.0062

P 0.082 0.005

N 1, N 2 730, 476 476, 476
Eutheria Var1, Var2 0.0328, 0.0279 0.0431, 0.0279

P 0.053 2 × 10−6

N 1, N 2 526, 369 369, 369
Mammalia Var1, Var2 0.0604, 0.0441 0.0456, 0.0441

P 0.001 0.750

N 1, N 2 71, 59 59, 59
Brain vs BMR Metatheria Var1, Var2 0.0221, 0.0205 0.0183, 0.0205

P 0.772 0.665

N 1, N 2 453, 308 308, 308
Eutheria Var1, Var2 0.0639, 0.0460 0.0532, 0.0460

P 0.002 0.204

Data sets are as described in Table 1. Bartlett’s test was applied to test for equality of the variances in the residuals of the models BMR ∼
body mass (‘scaling of BMR’) and brain mass ∼ body mass + BMR (‘Brain vs BMR’) using phylogenetic generalized least squares (PGLS).
The residuals were obtained separately with each of the two data sets compared. N 1, N 2, Var1 and Var2 are the sample sizes and variances
for each data set.

this. Fifty-four species of sciuromorphs had entries in the
BMR database and were therefore included in the ALL data
set. Of these, 24 could also be included in the SELECT
set (E = 1 or 2). Some of the remaining 30 species were
discarded from the SELECT set, notably because of concerns
that metabolic measurements had been conducted during the
day with fully diurnal animals. On a traditional allometric
scaling plot of the ALL data, the SELECT data clearly
tended to lie in the lower region of the data cloud (Fig. 2).
The 54 species of the ALL set led to a phylogenetically
informed scaling relationship of:

log10 BMR = 0.69 [0.11] + 0.67 [0.04] log10 m, (1)

where BMR is in ml O2 h−1, m in g and values
in brackets are S.E. However, the factor reliability
had a highly significant effect on BMR (P = 4 × 10−6),
when the non-significant (P = 0.57) interaction body
mass × reliability was discarded from the analysis.
Incorporating this factor led to the scaling equation

log10 BMR = 0.88 [0.07] + 0.60 [0.03] log10 m

–0.15 [0.03] reliability, (2)

with reliability taking the value of 0 for rejected values
(Fig. 2, dashed red line) and 1 for accepted values (Fig. 2,
continuous blue line). This direct comparison between
sciuromorph accepted and rejected values of the ALL data

set is complicated by the fact that they represent different
species. However, the effect of reliability could be assessed
directly for the 19 species that had both accepted (E = 1 or
2) and rejected (E = 3 or 4) BMR values. For each of these
species, we calculated the average of all accepted, and of all
rejected values, respectively, as deviations from the BMR
predicted by a phylogenetically informed scaling equation
based on the 19 SELECT values (log10BMR = 0.63
[0.12] + 0.66 [0.05] log10m). Then, we applied a PGLS
analysis to the difference between these average deviations
(accepted versus rejected). This difference was found to differ
significantly from 0 (difference = −0.11 ± 0.02; N = 19;
estimated lambda = 0; t18 = −4.72, P = 0.0002). On
average, rejected values exceeded accepted ones by about
28% in this restricted assemblage.

Sample size had only a weak influence on the significance
of the relationship between body mass and BMR obtained
with different data sets. This was revealed by the repeated
subsampling procedure applied to the SELECT and
SPOILED data sets across all mammals, a procedure which
further illustrated the strength of the BMR/body mass
relationship (Fig. 3A1 and A2). Indeed, with both of these
data sets, the effect of body mass on BMR remained highly
significant at all subsample sizes, except for the very smallest
(N = 5), where the associated probability became highly
erratic.

(2) Relationship between brain mass and BMR

All analyses conducted with the SELECT data set in the
context of the relationship among brain mass, body mass
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Table 3. Effect of data reliability on basal metabolic rate (BMR) in data sets containing both accepted (evaluation criterion E = 1
or 2) and rejected (E = 3 or 4) metabolic values

Clade Parameter ALL SPOILED

Mammalia Preliability (t) 3 × 10−7 (−5.19) 1 × 10−9 (−6.21)
β reliability −0.050 −0.082
Pm (t) <2 × 10−16 (81.8) <2 × 10−16 (58.4)
βm 0.736 0.714
N (accepted, rejected) 817 (549, 268) 549 (293, 256)

Metatheria Preliability (t) 0.092 (1.70) 0.206 (−1.28)
β reliability 0.113 −0.034
Pm (t) <2 × 10−16 (30.7) <2 × 10−16 (52.6)
βm 0.801 0.724
Pinteraction (t) 0.018 (–2.41) —
β interaction −0.064 —
N (accepted, rejected) 84 (70, 14) 70 (28, 42)

Eutheria Preliability (t) 1 × 10−6 (−4.94) 5 × 10−9 (−5.97)
β reliability −0.050 −0.086
Pm (t) <2 × 10−16 (71.9) <2 × 10−16 (50.6)
βm 0.734 0.720
N (accepted, rejected) 730 (476, 254) 476 (265, 211)

Data sets are as described in Table 1. The effect of reliability on BMR was tested with ANCOVA [using phylogenetic generalized least
squares (PGLS)] including body mass (m) as a covariate and reliability as a two-level factor (‘accepted’ for E = 1 or 2 and ‘rejected’ for
E = 3 or 4; ‘rejected’ is taken as the reference level). Results are given for the full model including the interaction body mass × reliability
and, when the latter was non-significant, for the simplified model without interaction. For each effect, the probability (P , underlined for
reliability and for the interaction) and the associated t value, as well the estimate (β) are given. A negative β reliability means that reliable BMR
values tend to be lower than rejected ones. The effect of body mass was always highly significant (see Table 1). N is sample size, the sample
sizes given in parentheses are those of the accepted and rejected data, respectively.

and BMR led to equally high r2 (with PGLS, all r2 ≥ 0.865).
This was primarily due to the tight relationship between brain
mass and body mass, the effect of BMR on brain mass always
being much weaker. Among the large clades, the interaction
body mass × BMR never had a significant effect on brain
mass. When this effect was discarded from the model, the
relationship between BMR and brain mass was significant
among Mammalia or Eutheria, but not among Metathe-
ria (Table 4). Among the order-level clades examined, the
SELECT data set led to a significant body mass × BMR
interaction only for Primates and Dasyuromorpha. Removal
of the non-significant interaction led to a non-significant
effect of BMR on brain mass in all remaining clades, except
in Carnivora (Fig. 4). The estimated lambda was variable in
these analyses (Table S4), although generally high (median
0.8, range 0–1), except for Diprotodontia and Dasyuromor-
pha, reflecting an appreciable phylogenetic signal in the data.

With the ALL data set, the interaction body mass × BMR
again had a non-significant effect on brain mass, and
when this interaction was removed from the analyses the
relationship between brain mass and BMR was significant
in Mammalia and Eutheria (Table 4). However, this
relationship was now also significant in Metatheria (Table 4,
Fig. 4), as well as in Carnivora and Diprotodontia (Fig. 4).
The ALL data set also differed from the SELECT set in
that it led to a significantly larger variance in the residuals in
Mammalia and Eutheria (Table 2), reflecting the added noise
caused by the rejected values of the ALL set. The variances

of these residuals were nevertheless not significantly different
in Metatheria (Table 2).

The effect of BMR on brain mass was no longer significant
among Mammalia and Eutheria in the SPOILED data set,
and the effect sizes were considerably smaller than in the
SELECT or ALL data sets (Table 4). In Metatheria, the
non-significant effect of BMR on brain mass was further
from significance with the SPOILED than with the SELECT
data set. In this clade, the effect size of BMR was smaller,
but the effect size of body mass was larger in the SPOILED
data set than in the SELECT or ALL data sets. Variance
inflation factors (VIF) were generally high (Table 4), around
10 in Mammalia and Eutheria, and up to 95 in Metatheria,
as expected due to the strong correlation between brain mass
and body mass on the one hand, and BMR and body mass on
the other. In the SPOILED data set, VIFs were slightly lower,
indicating reduced collinearity of the predictor variables due
to increased error variation in BMR. However, the variances
of the residuals obtained with the SPOILED and SELECT
data sets never differed significantly, including in Metatheria
(Table 2). The lambda estimated with the SPOILED data set
was also often lower than with the SELECT data set (seven
out of 13 clades, Table S4), reflecting a lower phylogenetic
structure in the residuals. However, the reverse was found in
four clades out of 13.

When applied in the context of the mammalian
brain mass/BMR relationship, the repeated subsampling
approach emphasized three major aspects of comparative
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Table 4. Effect of basal metabolic rate (BMR) and body mass on brain mass in several clades using different data sets for BMR

Clade Parameter ALL SELECT SPOILED

PBMR (t) 1 × 10−4 (3.89) 4 × 10−4 (3.61) 0.082 (1.75)
ßBMR 0.159 ± 0.041 0.183 ± 0.051 0.068 ± 0.039
VIF BMR 12.2 13.6 8.5

Mammalia Pm (t) <2 × 10−16 (15.7) <2 × 10−16 (12.7) <2 × 10−16 (19.5)
ßm 0.503 ± 0.032 0.490 ± 0.039 0.578 ± 0.030
VIF m 11.6 13.3 8.2
lambda 0.929 0.952 0.926
r2 (model) 0.883 0.900 0.890
N 526 369 369

PBMR (t) 0.025 (2.29) 0.110 (1.62) 0.356 (0.93)
ßBMR 0.372 ± 0.162 0.332 ± 0.205 0.150 ± 0.161
VIF BMR 75.2 94.3 42.6

Metatheria Pm (t) 8.6 × 10−3 (2.71) 0.018 (2.45) <1 × 10−5 (4.85)
ßm 0.335 ± 0.124 0.376 ± 0.154 0.571 ± 0.118
VIF m 75.2 94.3 42.6
lambda 0.805 0.759 0
r2 (model) 0.924 0.929 0.962
N 71 59 59

PBMR (t) 6 × 10−4 (3.47) 7 × 10−4 (3.43) 0.075 (1.79)
ßBMR 0.147 ± 0.042 0.179 ± 0.052 0.069 ± 0.039
VIF BMR 10.7 11.4 7.3

Eutheria Pm (t) <2 × 10−16 (15.4) <2 × 10−16 (12.4) <2 × 10−16 (18.8)
ßm 0.513 ± 0.033 0.496 ± 0.040 0.564 ± 0.030
VIF m 10.2 11.2 7.1
lambda 0.890 0.930 0.934
r2 (model) 0.876 0.896 0.881
N 453 308 308

Data sets are as described in Table 1. Results are given for the simplified model including body mass and BMR, without interaction. For
both predictors BMR and body mass (subscripts BMR and m), the probability (P , underlined for BMR) of the t value (t-test of 0 slope,
t reported in parentheses) is provided, along with the estimate of the slope (ß) and its S.E., and the variance inflation factor (VIF ). The
maximum likelihood estimate for lambda, sample size (N ) as well as the associated r2 are also given. In the complete model the interaction
body mass × BMR was never significant.

analyses including BMR. First, the probability of the
brain mass/BMR relationship was highly dependent on
the particular assemblage of species entered in a data set.
For example, different subsets of N = 90 randomly sampled
within the SELECT data set could lead to a probability
of the BMR effect ranging anywhere between 10−4 (highly
significant) and 0.99 (Fig. 3), with a median of 0.09. Second,
this approach also demonstrated the importance of sample
size. With both the SELECT and the SPOILED data sets, a
progressive increase in subsample size affected the probability
of the BMR effect on brain mass in a non-linear manner
(Fig. 3), whereby this probability gradually converged
towards the value obtained with the entire data set (i.e.
P = 4 × 10−4 for the SELECT data set and 0.082 for the
SPOILED data set; Table 4). Third, the importance of the
data-selection process was also confirmed. At all sample sizes,
P tended to remain consistently higher with the SPOILED
set when compared to the SELECT set. As a consequence,
significance tended to be achieved with smaller samples
when only SELECT values were used. For example, the
effect of BMR on brain mass was significant with the entire
SELECT data set (N = 369, P = 4 × 10−4; Table 4), but
tended to be non-significant with subsamples of less than

about 180 species (Fig. 3). When this same data set was
spoiled by 200 unreliable BMR estimates, this effect tended
to be non-significant at all sample sizes up to 369 (Fig. 3).

IV. DISCUSSION

(1) Effect of the reliability of the BMR data

We have shown that the results of comparative analyses
including BMR can be influenced appreciably by the
selection criteria applied while compiling the data. Both
the coefficients and the significance of a tested model may be
affected and, in some analyses, relaxing the BMR selection
criteria may result in crossing the significance limit for
a particular effect. Although there have been occasional
discussions in the literature about the appropriateness
of particular measurements as BMR estimates (McNab,
1987, 1992a, 1997, 2006; Speakman et al., 1993; White
& Seymour, 2003, 2004, 2005), the extent to which
different BMR data-selection procedures affect the results of
comparative analyses has never been examined in mammals.
In a re-analysis of a previous comparative study on birds
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Fig. 1. Scaling of basal metabolic rate (BMR) in Mammalia
as depicted by the ALL data set (N = 817, best BMR estimate
for each species in the database). Blue circles depict ‘accepted’
BMR values (SELECT data set; evaluation criterion E = 1 or 2,
N = 549) and red crosses depict the remaining, ‘rejected’ values
included in the ALL data set (E = 3 or 4, N = 268). Solid
blue and dashed red lines are the phylogenetically informed
(PGLS) best-fit lines for the ‘accepted’ and ‘rejected’ values,
respectively. The effect of reliability (‘accepted’ versus ‘rejected’)
was highly significant once the non-significant interaction body
mass × reliability was discarded from the model (Table 3).

(Reynolds & Lee, 1996), McKechnie & Wolf (2004) observed
that many of the rejected metabolic data failed to meet one
or more of the BMR criteria, thus overestimating the BMR
value. Ultimately, the inclusion of such data led to a scaling
equation with a significantly different scaling coefficient. In
our BMR database, such overestimations are also common
(e.g. animals not postabsorptive, not resting, and/or not
measured during a major resting phase of their daily cycle)
and in some cases the authors intentionally did not fulfill
all BMR criteria (e.g. in studies aimed at measuring RMR).
We corroborate the McKechnie & Wolf (2004) finding in
birds by demonstrating that, within both the SPOILED and
ALL data sets, rejected BMR estimates are generally about
12–20% larger than accepted ones for both Mammalia and
Eutheria (Table 3, Fig. 1). Hence increasing the number
of unreliable BMR estimates in a data set will potentially
increase the bias in the resulting model. Due to insufficient
information, it is currently impossible to assess the extent to
which this difference between reliable and unreliable data is
attributable to sleep. Finally, at least in the context of scaling
of BMR to body mass, the SPOILED data set consistently
led to a weaker phylogenetic signal in the model’s residuals
than the SELECT data set, which included the same species
(Table S4). This was expected since unreliable estimates
should introduce additional noise into a data set.

Fig. 2. Scaling of basal metabolic rate (BMR) to body mass
in sciuromorph rodents. Each sciuromorph species in the ALL
data set is represented by a single value corresponding to the
‘best’ estimate available for that species. Blue circles are species
for which this best estimate was considered ‘accepted’ (E = 1
or 2; SELECT data set) and red crosses are species for which
the estimate was considered ‘rejected’ (E = 3 or 4). Solid blue
and dashed red lines are the phylogenetically informed (PGLS)
best-fit lines for the ‘accepted’ and ‘rejected’ values, respectively.
The non-significant interaction body mass × reliability in the
complete model was discarded and the scaling coefficients of the
two lines differed significantly.

Apart from the failure to fulfill one or more BMR
criteria, many other reasons were found for rejecting a
value as a BMR estimate in the mammalian database.
As was pointed out by McKechnie & Wolf (2004), lack of
information provided by the authors often precluded a sound
assessment as to whether the metabolic values provided
could be considered to be reliable BMR estimates. For
example, adult status and non-reproductive condition were
often not explicitly stated. In some cases, the body mass of
the measured subjects was not given. Still other entries were
associated with dubious interpretations (e.g. concerning the
range of the thermoneutral zone), miscalculations, or other
technical problems, and some of these presumably even
underestimated the BMR. Thus, rather than leading to a
systematic overestimation of the BMR, the use of relaxed
criteria for the BMR data-selection process mainly adds
noise to a data set. Indeed, significantly different variances
were obtained in the model residuals with the SELECT
and SPOILED data sets in the analyses of the scaling of
BMR (Table 2). A similar tendency was also found when the
SELECT and ALL sets were compared (Table 2). However,
presumably due to their greater similarity, these data sets
led to variances of the residuals that differed significantly
only for Mammalia. Let it be noted that, apart from the
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Fig. 3. Comparison between results of the repeated subsampling procedure, for SELECT and SPOILED data sets, and for a strong
and a weak relationship: (A) the effect of body mass on basal metabolic rate (BMR) (strong) and (B) the effect of BMR on brain
mass, controlled for body mass (weak). In A1 and B1, random subsamples are drawn from the SELECT data sets, and in A2 and B2
from the SPOILED data sets, respectively. The x-axis shows the sample size of the random subsample, while the y-axis gives the P
value of the effect of the explanatory variable (A: body mass; B: BMR). Each dot represents the result of a phylogenetic generalized
least-squares (PGLS) analysis based on a random subsample of the original data set (data set A: N = 549; data set B: N = 369). The
final dot at the right of the B graphs corresponds to the P value obtained with the complete data set (Table 4). Continuous curves
are best-fit curves obtained with a generalized additive model (gam). Horizontal dashed line depicts P = 0.05.

inclusion of inappropriate BMR estimates in a database,
added noise may also result from the combination of different
previously published data sets, each based on different
data-selection criteria. Yet this appears to be common
practice for time-saving convenience.

(2) Interaction among data reliability, sample size
and strength of a relationship

Our results only partly confirm the expectation that differ-
ences in the BMR data selection criteria will have a larger
effect in the case of relatively weaker relationships. Indeed,
very similar curves were obtained with the subsampling
procedure applied to the SELECT and SPOILED data
sets in the context of the scaling of BMR to body mass. As
expected, the relationship between BMR and body mass was
highly significant at all subsample sizes for the two data sets,

down to subsample sizes of 10, confirming the strength of
this scaling effect. However, consistent differences did arise
in this context (variances of the residuals, model coefficients),
and with smaller species assemblages the deviations could
be fairly large. The example of the sciuromorph rodents,
for which many metabolic values obtained during the
alpha (‘normally active’) phase of the daily cycle are
available, was an extreme and illustrative case. Interestingly,
Hayssen & Lacy (1985) obtained an equation for Sciuridae
(log10BMR = 0.816 + 0.615 log10m; BMR in ml O2 h−1

and m in g) in which the scaling coefficient was roughly
intermediate between ours for accepted and rejected values
of the ALL set (0.73 versus 0.88, scaling exponents similar).
This can be understood when one realizes that these authors
included several values corresponding to an alpha phase
resting metabolic rate, thus grossly overestimating the BMR
values.
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Larger effects of the data-selection process were observed
in the context of the weaker brain mass/BMR relationship,
even affecting the significance of the relationship. Using
PGLS, this relationship was significant for all three large
clades with the ALL data set, in none of them with the
SPOILED set, and only in Mammalia and Eutheria with
the SELECT set (Table 4). In this context, reliability of the
data set clearly interacted with sample size in affecting the
results of the analyses. First, the results obtained with the
different data sets tended to differ more with small than with
large sample sizes (e.g. Fig. 4). They even appeared erratic at
small sample sizes, the brain mass/BMR relationship being
significant for only a few orders, and the more reliable data
sets not necessarily leading to a lower probability. Second,
the interaction between sample size and data reliability was
illustrated by the subsampling procedure (Fig. 3), a process
that sheds light on the results obtained with clades having
different sample sizes (Fig. 4). Indeed, discarding at random
even a limited number of species in a large data set led to a
rapid increase in the scatter around an average probability,
which itself departed in a non-linear way from the prob-
ability obtained with the entire corresponding data set. At
the same time, the probability of a null effect of BMR on
brain mass was consistently higher at all subsample sizes for
a SPOILED-derived subsample than for a SELECT-derived
subsample, which was clearly due to the added noise in the
BMR data of the SPOILED data set. One conclusion would
be that, even when a significant relationship is observed,
comparative tests of a relationship between BMR and brain
mass (or any other weak relationship) should always be
treated with caution when based on small samples. This
may, for example, occur when restricting an analysis to a
particular order of mammals, except for those with the largest
species richness. The subsampling procedure might even be
an interesting way to test the reliability of a demonstrated
relationship as it might help to assess the sensitivity of a signif-
icant result to the omission of a small number of species from
a data set. Furthermore, while increasing sample size is obvi-
ously desirable, it should also be approached with caution,
especially when it involves inclusion of more unreliable data.

(3) Scaling of BMR to body mass

The biological relationships analysed herein were used
primarily to illustrate the potential effects of BMR
data-selection procedures on the results of comparative
analyses. Nevertheless, these results still merit attention in
their own right. Our analyses of the scaling of BMR to
body mass broadly confirm results from many previous
studies (e.g. McNab, 1988a; Lovegrove, 2000; Symonds &
Elgar, 2002; White & Seymour, 2003, 2004, 2005; Sieg
et al., 2009; Capellini et al., 2010; Clarke et al., 2010). The
phylogenetic signal obtained among eutherians (or mammals
in general) was close to unity (lambda, Tables 1 and S4,
SELECT data set), confirming the strong phylogenetic
structure of the residuals already reported by others (Isler
& van Schaik, 2009; Sieg et al., 2009; Capellini et al., 2010).
By contrast, the optimized value of lambda was 0 for the

Fig. 4. Probability of log10 basal metabolic rate (BMR) effect
on log10 brain mass as a function of sample size in different
clades, using three different data sets. The graphed probability
refers to the model including only the direct effects of log10 body
mass and log10 BMR, without their (non-significant) interaction.
Displayed are the larger clades (Mammalia, Eutheria and
Metatheria) and orders for which sample size in the SELECT
data set was larger than 10. Primates and Dasyuromorpha
are not represented as the interaction body mass × BMR
was significant in these orders. Colour indicates the data set
considered: pink symbols: ALL; blue symbols: SELECT; orange
symbols: SPOILED. Dashed line depicts significance level of
P = 0.05.

marsupials, reflecting an absence of phylogenetic structure
in the residuals. Capellini et al. (2010) also found a low
phylogenetic signal (lambda = 0.4) for marsupials.

The allometric coefficients found for Metatheria and for
Eutheria broadly corroborate earlier findings. The coefficient
found for the marsupials was lower than that found for
eutherian mammals (0.382 ± 0.026 versus 0.455 ± 0.060,
Table 1, SELECT data set), although 95% confidence
intervals for these coefficients overlap in this case and scaling
exponents also differed slightly, with BMR values for the
marsupials tending to be lower especially at low body masses.
That marsupials collectively tend to exhibit lower basal
rates of metabolism than eutherians has been recognized
previously (McNab, 2005, 2008a; Capellini et al., 2010).
White & Seymour (2003, 2004) argued that this difference is
linked to differences in body temperature and proposed that
BMR should be corrected for these differences. Sieg et al.
(2009) then demonstrated that body temperature explains
only a very small part of the variation in BMR in addition
to body mass. But even if BMR and body temperature were
strongly correlated, a correction of BMR for differences in
body temperature would seem inappropriate as it is unlikely
that body temperature determines BMR (McNab, 2006).

Biological Reviews 93 (2018) 404–438 © 2017 Cambridge Philosophical Society



418 Genoud Michel, Karin Isler and Robert D. Martin

McNab (2005) proposed that the low scaling coefficient
observed in the marsupials is due to the absence of high-BMR
species in this clade. He argues that only a placental mode
of reproduction allows species to profit from high-energy
ecological niches by increasing their reproductive output
concomitantly with the rate of biosynthesis. However, it is
unclear why marsupials would not also be able to do so during
lactation. Further work is still needed to understand the BMR
differences observed between Metatheria and Eutheria.

The scaling exponent obtained for the eutherians
with a phylogenetically informed analysis (0.726 ± 0.012,
Table 1, SELECT data set) is similar to many previously
published values [e.g. 0.716–0.724 (McNab, 1988a, 2008a;
Capellini et al., 2010)]. For the metatherians, this exponent
(0.743 ± 0.010, Table 1, SELECT data set) is also close to
that (0.724 ± 0.015) obtained by Capellini et al. (2010) and
its confidence intervals include 3/4. However, as found by
White et al. (2009) and Capellini et al. (2010), the confidence
intervals of the exponent obtained for eutherians included
neither 2/3 nor 3/4, values which have been ‘predicted’
by mechanistic models (e.g. West, Brown & Enquist, 1997;
Roberts, Lightfoot & Porter, 2010). Despite many attempts
to derive mechanistically a ‘theoretical’ allometric exponent
for the scaling of BMR (e.g. Beuchat et al., 1997; West et al.,
1997; Roberts et al., 2010), no single value is universally
accepted and, as Sieg et al. (2009) and Capellini et al. (2010)
have argued, it is even presently unclear whether BMR
should be expected to scale with body mass in a uniform
fashion in different lineages. McNab (2008a) also showed
that the allometric exponent depends on the confounding
variables included in the analysis besides body mass. A key
point is that despite selecting only the most reliable BMR
estimates we could not find any support for the predicted
‘theoretical’ scaling exponents of either 3/4 or 2/3.

(4) Relationship among brain mass, body mass and
BMR

The relationship between brain mass and BMR was
significant and positive in Eutheria as well as in Mammalia
(Table 4, SELECT data set). In Metatheria, it was
non-significant, as within the individual orders examined,
except for Carnivora (Fig. 4). Again, the latter results must
clearly be interpreted with caution, given the small sample
sizes concerned [N = 59 for Metatheria (Table 4); N ≤ 97
for individual orders (Fig. 4)] and the demonstrated effect of
sample size on the probability of a BMR effect on brain mass
(Fig. 3B1). Martin (1981) argued that a link between brain
size and BMR was reflected in the (∼0.75 power) scaling of
brain size to body mass. Attempts to demonstrate such a link
statistically failed initially (Pagel & Harvey, 1988; McNab
& Eisenberg, 1989), but later studies consistently found
a weak, although significant, positive relationship (Martin,
1996, 1998; Martin, Genoud & Hemelrijk, 2005; Isler &
van Schaik, 2006b, 2009; Sobrero et al., 2011). Our results
are similar to those of Isler & van Schaik (2006b). Martin
et al. (2005) included gestation length in their analyses of the
brain size/BMR relationship, in an attempt to examine the

maternal energy hypothesis (Martin, 1981, 1996). The latter
hypothesis, which states that encephalization is limited by
the amount of energy that a mother is able to allocate to
her growing offspring, was supported by their conclusion
that the relationship between brain mass and body mass
among placentals was primarily due to a direct link between
BMR and brain size. Recent examinations of the brain
size/BMR link often include life-history variables reflecting
the rate of offspring production (e.g. litter size or maximum
reproductive rate), because encephalization may be traded
off against reproductive rate, and because this trade-off might
then obscure the relationship between brain size and BMR
(Isler & van Schaik, 2009; Barrickman & Lin, 2010).

Taking body mass and gestation length into account,
Barton & Capellini (2011) obtained a significant correlation
between neonate brain size and BMR, providing support
for the maternal energy hypothesis. They argued that the
weakness of the adult brain size/BMR relationship is due
both to the effect of other life-history variables and to the
fact that BMR constrains brain growth rate only during the
prenatal period. As for the Metatheria, recent examinations
of the brain size/BMR link led to contradictory results.
Isler (2011) found the relationship to be significant when
the maximum reproductive rate was accounted for, but
Weisbecker & Goswami (2010, 2014) did not find a significant
effect of BMR on brain size and argued that weaning
age and litter size were the best-supported correlates of
relative brain size in marsupials. But in this case, too, these
results must be viewed in light of the smaller sample sizes
involved. Moreover, collinearity problems are most striking
in Metatheria. While the effect of the covariate body mass
is consistently very strong in these models, and sample size
is large, the observed collinearity effect does not impair the
results regarding the BMR effect in Mammalia or Eutheria.
In Metatheria, however, VIFs are strikingly high (between
40 and 95, Table 4) and the effect size of body mass varies
considerably among data sets. A brain mass–body mass slope
of about 0.35 in the ALL and SELECT data sets is relatively
low compared to the interspecific slope of 0.5–0.8 commonly
observed in most mammalian clades, while in the SPOILED
data set a more reasonable estimate of 0.57 is observed.
This indicates an extremly tight correlation between brain
mass, BMR and body mass in Metatheria, which, however,
is therefore not very robust. The inclusion or exclusion of
single data points may determine the outcome of the analyses,
which may also explain why the relationship between BMR
and brain size in Metatheria is disputed (Weisbecker &
Goswami, 2010, 2014; Isler, 2011). We conclude that, in
cases of unavoidable collinearity issues, strict monitoring of
data quality is of even greater importance.

In any case, the weakness of a possible link between
BMR and brain mass must be recognized even for placental
mammals. Low r2 values have been reported earlier for the
effect of BMR on brain mass in placentals or more restricted
clades of eutherians (Isler & van Schaik, 2006b; Weisbecker &
Goswami, 2010, 2014; Sobrero et al., 2011). Any conclusion
about such a relationship rests on the hypothesis that no
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important confounding factor has been neglected. The major
confounding variable is always body mass and this variable
was taken into account in all cited examples as well as in our
analyses. However, a wealth of other factors could potentially
affect the brain mass/BMR relationship (e.g. diet, climate,
life history, geographic distribution, patterns of parental care)
through an effect on brain size, on BMR, or on both.

(5) On the use and usefulness of the BMR database

We have acknowledged the difficulties in estimating the BMR
in many mammals and have argued that these difficulties are
often taxon-specific. Resting rate of metabolism, or RMR,
is a rate measured under much less restrictive conditions
than BMR, the only specific requirement being that the
animal is resting during the measurements. RMR is typically
referred to when minimal rates of metabolism of resting
normothermic endotherms are measured in conditions
incompatible with BMR. For example, the term has been
applied to rates measured in pregnant or lactating females
(e.g. Stephenson & Racey, 1993b; Zenuto, Antinuchi &
Busch, 2002; Krol, Johnson & Speakman, 2003; Cretegny
& Genoud, 2006), in individuals exposed to temperatures
below the thermoneutral zone (e.g. Ron & Haim, 2001;
Konarzewski, Ksiazek & Lapo, 2005; Oelkrug et al., 2012)
or in postprandial (i.e. not postabsorptive) individuals (e.g.
Zenuto et al., 2002; Speakman et al., 2004; Larivée et al., 2010;
Careau, 2013). While the use of RMR can be justified in
an experimental context, its inclusion in comparative studies
poses problems due to its lack of comparability (e.g. see
discussion in McNab, 2012). Indeed, RMR exceeds BMR
by a variable amount depending on the additional activity
in which the organism is engaged and on its intensity. By
contrast, BMR is much more standardized (McNab, 1997;
McKechnie & Swanson, 2010), precisely because the criteria
by which it is defined eliminate various factors that can
affect it, such as activity, reproduction, growth or digestion
(Speakman et al., 2004). BMR can be estimated in the vast
majority of endotherms, except for very few species such
as some tenrecs or bats that might not exhibit a basal
rate at all (McNab, 1997). It expresses the minimum rate
of metabolism of individuals maintaining their normal body
temperature (i.e. not undergoing daily torpor or hibernation),
the comparison of which is justified even if many mammals
(e.g. small mammals living in cold or temperate regions) only
rarely express their basal rate in nature. BMR is also useful to
estimate the incremental energetic costs related to particular
activities (Brody, 1945; Hulbert & Else, 2004).

Despite its comparability, BMR might not always be
the most relevant energetic variable to be included in a
comparative analysis. The summit metabolic rate (maximum
cold-induced metabolic rate) and VO2max (maximum
metabolic rate during exercise) are other standardized rates
that have sometimes been included in comparative analyses
(e.g. McKechnie & Swanson, 2010). These rates are not
necessarily expressed more frequently in the field and are
best considered as complementary to BMR. Furthermore,
BMR is often used as a proxy for overall energy expenditure

or requirements. In such cases, field metabolic rates (FMR)
or estimates of field energy requirements might be more
appropriate. While FMR directly expresses the energy
expenditure of free-living animals, its intra- and interspecific
variation is always difficult to interpret as it reflects not only
physiological variation, but also behavioural differences and
ecological (especially thermal) variation within and among
species (McNab, 1997).

Interspecific comparative analyses typically select one
single value for each species, a procedure that was also
adopted in our analyses. This entirely discards intraspecific
variation in BMR and assumes that a single value entered
for a species is representative of the individuals of that
species (Konarzewski & Ksiazek, 2013). Firstly, BMR
exhibits appreciable phenotypic flexibility, notably across
the seasons (Genoud, 1990; Lovegrove, 2005; McKechnie,
2008). The latter factor can be included explicitly among the
BMR criteria in order to enhance comparability of BMR
(McNab, 2008a). In our database, values obtained during a
season of higher resource availability were usually preferred.
Secondly, even after accounting for body-mass variation,
season or other potentially influential factors, considerable
individual variation in BMR was often observed (e.g.
Speakman & McQueenie, 1996; Cruz-Neto & Bozinovic,
2004; Speakman et al., 2004; Cretegny & Genoud, 2006;
Burton et al., 2011; Genoud & Christe, 2011). Its causes
are multiple, including intrinsic factors (local adaptation,
maternal effects, anatomical or behavioural differences) as
well as extrinsic factors (reviewed in Burton et al., 2011).
Consequences for fitness have also been demonstrated,
even if the link between BMR and fitness has sometimes
been described as context-specific, with no single rate
being optimal in any given population (Jackson, Trayhurn
& Speakman, 2001; Boratynski & Koteja, 2009, 2010;
Boratynski et al., 2010; Larivée et al., 2010). In view of
the diversity of causes and components of intraspecific
variation in BMR, taking account of intraspecific variability
in BMR in interspecific comparative analyses is certainly a
complicated task. Sieg et al. (2009) demonstrated that varying
the ratio of the intraspecific variances of body mass and
BMR can affect the model coefficients obtained for the
interspecific scaling of BMR to body mass in different
clades of mammals. In general, results of interspecific
comparative analyses are expected to be more strongly
affected by intraspecific variation when species averages
are based on small samples, or when intraspecific variation
is substantial relative to the expected variance among
species (Felsenstein, 2008). The latter is most likely to occur
in analyses of relatively small clades such as genera or
subfamilies. Then, it becomes relevant to apply either a
technique to include intraspecific variation in interspecific
comparative analyses (Ives, Midford & Garland, 2007;
Felsenstein, 2008) or a Bayesian mixed-model approach
which models within-species variation as repeated measures
with a random effect (Hadfield & Nakagawa, 2010; Revell
& Reynolds, 2012). Our database already provides BMR
estimates for different conspecific populations whenever
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available. Such differences should be considered cautiously if
they rely on estimates associated with a low reliability and/or
measured by different authors with different methods. On
the other hand, the database can help in selecting those
entries that could be relevant for assessment of populational
differences.

The BMR database is primarily intended to facilitate the
difficult task of data selection. Yet we emphasize that this
selection process requires personal choices as to how BMR
values are to be selected. The database should also be useful
in various other ways. It may, for example, help identify
species of particular interest that are currently absent from
the database, or species for which additional measurements
are particularly welcome (e.g. due to small sample size or
doubts about the reliability of available estimates). It could
also be used to improve an experimental protocol with the
aim of obtaining more-reliable estimates of BMR. Whatever
its usefulness, this database is, however, far from exhaustive
and could be enhanced in various ways. Apart from the
obvious improvement brought about by additional entries,
new variables could also be added, as more data are gradually
published. In this context, much work still remains to be
done to obtain comparable data on the minimum energy
requirements of normothermic endotherms. For example,
additional information on the duration of the postprandial
metabolic response in various species or the patterns of sleep
and their metabolic consequences for the BMR would be
especially interesting.

V. CONCLUSIONS

(1) We have demonstrated that the criteria applied during
the BMR data-selection process can influence the results
of comparative analyses including BMR among mammals.
Depending on the particular clade and relationship examined
and depending on the sample size available, the reliability of
a data set can affect the model parameters, the variance of
the model’s residuals and even the significance of the tested
model. A large proportion of previously published studies
used metabolic data gathered by others without considering
the actual conditions under which they were obtained. Our
analyses substantiate the arguments marshalled by Borries
et al. (2016), who emphazised the need for more careful
reliability control with data used in comparative analyses.
These authors strongly recommended more transparency in
comparative databases, including a better description of the
methods applied in the original papers. The comprehensive
BMR database provided herein represents a significant step
in this direction in that it should facilitate the challenging
procedure of data selection.

(2) Even with strong relationships such as the BMR/body
mass relationship, the data-selection process can significantly
affect the results of a comparative analysis. We demonstrated
that unreliable estimates of the BMR mostly tend to
overestimate basal rate of metabolism and lead to slightly
larger scaling coefficients. The finding of McKechnie &

Wolf (2004) that the addition of unreliable BMR estimates
leads to a larger scaling coefficient in birds was accordingly
corroborated for mammals.

(3) The results of comparative analyses including BMR are
especially sensitive to the BMR data-selection process when
weak relationships are examined. In such cases, the inclusion
of unreliable BMR estimates in a data set may even result in
different conclusions. By sequentially removing one or a few
species from a data set, the repeated subsampling procedure
showed that our brain mass/BMR results are highly sensitive
to the particular species that are included in the analyses, to
the reliability of the selected data as well as to the sample
size. Even when considering only reliable BMR estimates,
sample sizes of more than 180 species were required to find
a significant relationship consistently between brain mass
and BMR among the Mammalia. We conclude that, when
weak relationships such as the brain mass/BMR relationship
are examined, and when large sample sizes are unavailable
(e.g. when restricting an analysis to a particular order), the
interpretation of results from comparative analyses demands
great caution, even with seemingly significant results.
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Beiträge 33, 33–59.
*Dodgen, C. L. & Blood, F. R. (1956). Energy sources in the bat. American Journal of

Physiology 187, 151–154.
*Doty, A. C. (2012). Aspects of heterothermy in four species of afrotropical bats. MSc Thesis:

Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.
*Downs, C. J., Brown, J. L., Wone, B., Donovan, E. R., Hunter, K. & Hayes,

J. P. (2013). Selection for increased mass-independent maximal metabolic rate
suppresses innate but not adaptive immune function. Proceedings of the Royal Society of

London, Series B: Biological Sciences 280, 20122636.
*Downs, C. T., Bowland, J. M., Bowland, A. E. & Perrin, M. R. (1991). Thermal

parameters of serval Felis serval (Felidae) and blackbacked jackal Canis mesomelas

(Canidae). Journal of Thermal Biology 16, 277–279.
*Downs, C. T. & Perrin, M. R. (1990). Thermal parameters of four species of

Gerbillurus. Journal of Thermal Biology 15, 291–300.
*Downs, C. T. & Perrin, M. R. (1994). Comparative aspects of the thermal biology of

the short-tailed gerbil, Desmodillus auricularis, and the bushveld gerbil, Tatera leucogaster.
Journal of Thermal Biology 19, 385–392.

*Downs, C. T. & Perrin, M. R. (1995a). The thermal biology of the white-tailed
rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland.
Comparative Biochemistry and Physiology A 110, 65–69.

*Downs, C. T. & Perrin, M. R. (1995b). The thermal biology of three southern
African elephant-shrews. Journal of Thermal Biology 20, 445–450.

*Downs, C. T. & Perrin, M. R. (1996). The thermal biology of southern Africa’s
smallest rodent, Mus minutoides. South African Journal of Science 92, 282–285.

*Downs, C. T., Zungu, M. M. & Brown, M. (2012). Seasonal effects on
thermoregulatory abilities of the Wahlberg’s epauletted fruit bat (Epomophorus

wahlbergi) in KwaZulu-Natal, South Africa. Journal of Thermal Biology 37, 144–150.
*Drozdz, A. & Gorecki, A. (1967). Oxygen consumption and heat production in

chinchillas. Acta Theriologica 12, 81–86.
*Drozdz, A., Gorecki, A., Grodzinski, W. & Pelikan, J. (1971). Bioenergetics of

water voles (Arvicola terrestris L.) from southern Moravia. Annales Zoologici Fennici 8,
97–103.

*Dryden, G. L., Gebczynski, M. & Douglas, E. L. (1974). Oxygen consumption
by nursling and adult musk shrews. Acta Theriologica 19, 453–461.

*Dunaway, P. B. (1968). Life history and populational aspects of the eastern harvest
mouse. American Midland Naturalist 79, 48–67.

*Du Plessis, A., Erasmus, T. & Kerley, G. I. H. (1989). Thermoregulatory
patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comparative

Biochemistry and Physiology A 94, 215–220.
*Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. (1985). Nutrition and burrowing

energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87.
*Duxbury, K. J. & Perrin, M. R. (1992). Thermal biology and water turnover rate

in the Cape gerbil, Tatera afra (Gerbillidae). Journal of Thermal Biology 17, 199–208.
*Ebisu, R. J. & Whittow, G. C. (1976). Temperature regulation in the small

Indian mongoose (Herpestes auropunctatus). Comparative Biochemistry and Physiology A 54,
309–313.

*Ehrhardt, N., Heldmaier, G. & Exner, C. (2005). Adaptive mechanisms during
food restriction in Acomys russatus: the use of torpor for desert survival. Journal of

Comparative Physiology B 175, 193–200.
*Ellison, G. T. H. (1995). Thermoregulatory responses of cold-acclimated fat mice

(Steatomys pratensis). Journal of Mammalogy 76, 240–247.
*El-Nouty, F. D., Yousef, M. K., Magdub, A. B. & Johnson, H. D. (1978).

Thyroid hormones and metabolic rate in burros, Equus asinus, and llamas, Lama

glama: effects of environmental temperature. Comparative Biochemistry and Physiology A

60, 235–237.
*Enger, P. S. (1957). Heat regulation and metabolism in some tropical mammals and

birds. Acta Physiologica Scandinavica 40, 161–166.
*Erikson, H. (1956). Observations on the metabolism of Arctic ground squirrels

(Citellus parryi) at different environmental temperatures. Acta Physiologica Scandinavica

36, 66–74.
Fabre, P. H., Hautier, L., Dimitrov, D. & Douzery, E. J. P. (2012). A glimpse

on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary

Biology 12, 88.
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et en hiver en l’absence d’hibernation. Archives des Sciences Physiologiques 24, 133–143.
*Hill, R. W. (1975). Metabolism, thermal conductance, and body temperature in one

of the largest species of Peromyscus, P. pirrensis. Journal of Thermal Biology 1, 109–112.
*Hill, R. W. & Hooper, E. T. (1971). Temperature regulation in mice of the genus

Scotinomys. Journal of Mammalogy 52, 806–816.
*Hinds, D. S. (1973). Acclimatization of thermoregulation in the desert cottontail,

Sylvilagus audubonii. Journal of Mammalogy 54, 708–728.
*Hinds, D. S. (1977). Acclimatization of thermoregulation in desert-inhabiting

jackrabbits (Lepus alleni and Lepus californicus). Ecology 58, 246–264.
*Hinds, D. S., Baudinette, R. V., MacMillen, R. E. & Halpern, E. A. (1993).

Maximum metabolism and the aerobic scope of endotherms. Journal of Experimental

Biology 182, 41–56.
*Hinds, D. S. & MacMillen, R. E. (1985). Scaling of energy metabolism and

evaporative water loss in heteromyid rodents. Physiological Zoology 58, 282–298.
*Hinds, D. S. & Rice-Warner, C. N. (1992). Maximum metabolism and aerobic

capacity in heteromyid and other rodents. Physiological Zoology 65, 188–214.
*Hissa, R. (1970). Calorigenic effect of noradrenaline in the Norwegian lemming,

Lemmus lemmus (L.). Experientia 26, 266–267.
*Hock, R. J. (1951). The metabolic rates and body temperatures of bats. Biological

Bulletin, Marine Biological Laboratory, Woods Hole 101, 289–299.
*Hock, R. J. (1960). Seasonal variations in physiologic functions of arctic ground

squirrels and black bears. Bulletin of the Museum of Comparative Zoology at Harvard College

124, 155–171.
*Holloway, J. C. & Geiser, F. (2001a). Effects of Helium/Oxygen and temperature

on aerobic metabolism in the marsupial sugar glider, Petaurus breviceps. Physiological

and Biochemical Zoology 74, 219–225.
*Holloway, J. C. & Geiser, F. (2001b). Seasonal changes in the thermoenergetics

of the marsupial sugar glider, Petaurus breviceps. Journal of Comparative Physiology B 171,
643–650.

*Hooper, E. T. & El Hilali, M. (1972). Temperature regulation and habits in two
species of jerboa, genus Jaculus. Journal of Mammalogy 53, 574–593.

*Horst, K., Mendel, L. B. & Benedict, F. G. (1930). The metabolism of the albino
rat during prolonged fasting at two different environmental temperatures. Journal of

Nutrition 3, 177–200.
*Hosken, D. J. (1997). Thermal biology and metabolism of the greater long-eared

bat, Nycophilus major (Chiroptera: Vespertilionidae). Australian Journal of Zoology 45,
145–156.

*Hosken, D. J. & Withers, P. C. (1997). Temperature regulation and metabolism of
an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic
and torpid. Journal of Comparative Physiology B 167, 71–80.

*Hosken, D. J. & Withers, P. C. (1999). Metabolic physiology of euthermic and
torpid lesser long-eared bats, Nyctophilus geoffroyi (Chiroptera: Vespertilionidae).
Journal of Mammalogy 80, 42–52.

*Hudson, J. W. (1962). The role of water in the biology of the antelope ground
squirrel Citellus leucurus. University of California Publications in Zoology 64, 1–56.

*Hudson, J. W. (1965). Temperature regulation and torpidity in the pygmy mouse,
Baiomys taylori. Physiological Zoology 38, 243–254.

*Hudson, J. W. & Dawson, T. J. (1975). Role of sweating from the tail in the
thermal balance of the rat-kangaroo Potorous tridactylus. Australian Journal of Zoology 23,
453–461.

*Hudson, J. W. & Deavers, D. R. (1973a). Metabolism, pulmocutaneous water loss
and respiration of eight species of ground squirrels from different environments.
Comparative Biochemistry and Physiology A 45, 69–100.

*Hudson, J. W. & Deavers, D. R. (1973b). Thermoregulation at high temperatures in
six species of ground squirrels (Spermophilus spp.) from different habitats. Physiological

Zoology 46, 95–109.
*†Hudson, J. W., Deavers, D. R. & Bradley, S. R. (1972). A comparative study

of temperature regulation in ground squirrels with special reference to the desert
species. In Comparative Physiology of Desert Animals, Symposia of the Zoological Society
of London 31 (ed. G. M. O. Maloiy), pp. 191–213. Academic Press, New York.

*†Hudson, J. W. & Rummel, J. A. (1966). Water metabolism and temperature
regulation of the primitive heteromyids, Liomys salvani and Liomys irroratus. Ecology 47,
345–354.

*Hudson, J. W. & Scott, I. M. (1979). Daily torpor in the laboratory mouse, Mus

musculus Var. albino. Physiological Zoology 52, 205–218.
*Hulbert, A. J. & Dawson, T. J. (1974). Standard metabolism and body temperature

of perameloid marsupials from different environments. Comparative Biochemistry and

Physiology A 47, 583–590.
Hulbert, A. J. & Else, P. L. (2004). Basal metabolic rate: history, composition,

regulation, and usefulness. Physiological and Biochemical Zoology 77, 869–876.
*Hulbert, A. J., Hinds, D. S. & MacMillen, R. E. (1985). Minimal metabolism,

summit metabolism and plasma thyroxine in rodents from different environments.
Comparative Biochemistry and Physiology A 81, 687–693.

*Hussein, H. K. (1991). Effect of temperature and body size on the metabolic rate of
the Egyptian house mice Mus musculus and the roof rat Rattus rattus. Journal of Islamic

Academy of Sciences 4, 249–252.
*Irvine, A. B. (1983). Manatee metabolism and its influence on distribution in Florida.

Biological Conservation 25, 315–334.
*Irving, L., Krog, H. & Monson, M. (1955). The metabolism of some Alaskan

animals in winter and summer. Physiological Zoology 28, 173–185.
*Irving, L., Peyton, L. J. & Monson, M. (1956). Metabolism and insulation of swine

as bare-skinned mammals. Journal of Applied Physiology 9, 421–426.
*Irving, L., Scholander, P. F. & Grinnell, S. W. (1941). The respiration of the

porpoise, Tursiops truncatus. Journal of Cellular and Comparative Physiology 17, 145–168.
Isler, K. (2011). Energetic trade-offs between brain size and offspring production:

marsupials confirm a general mammalian pattern. Bioessays 33, 173–179.
Isler, K., Kirk, E. C., Miller, J. M. A., Albrecht, G. A., Gelvin, B. R. &

Martin, R. D. (2008). Endocranial volumes of primate species: scaling analyses
using a comprehensive and reliable data set. Journal of Human Evolution 55, 967–978.

Isler, K. & van Schaik, C. P. (2006a). Costs of encephalization: the energy trade-off
hypothesis tested on birds. Journal of Human Evolution 51, 228–243.

Isler, K. & van Schaik, C. P. (2006b). Metabolic costs of brain size evolution. Biology

Letters 2, 557–560.
Isler, K. & van Schaik, C. P. (2009). The expensive brain: a framework for explaining

evolutionary changes in brain size. Journal of Human Evolution 57, 392–400.
Isler, K. & van Schaik, C. P. (2012). Allomaternal care, life history and brain size

evolution in mammals. Journal of Human Evolution 63, 52–63.
*Iversen, J. A. (1972). Basal energy metabolism of mustelids. Journal of Comparative

Physiology 81, 341–344.
*Iversen, J. A. & Krog, J. (1973). Heat production and body surface area in seals and

sea otters. Norwegian Journal of Zoology 21, 51–54.
Ives, A. R., Midford, P. E. & Garland, T. (2007). Within-species variation and

measurement error in phylogenetic comparative methods. Systematic Biology 56,
252–270.

*Jackson, D. M., Trayhurn, P. & Speakman, J. R. (2001). Associations between
energetics and over-winter survival in the short-tailed field vole Microtus agrestis.
Journal of Animal Ecology 70, 633–640.

*Jansky, L. (1959). Working oxygen consumption in two species of wild rodents
(Microtus arvalis, Clethrionomys glareolus). Physiologia Bohemoslovenica 8, 472–478.

*Jeanniard du Dot, T., Rosen, D. A. S. & Trites, A. W. (2009). Energy reallocation
during and after periods of nutritional stress in Steller sea lions: low-quality diet
reduces capacity for physiological adjustments. Physiological and Biochemical Zoology 82,
516–530.

*Jefimow, M., Ostrowski, M., Jakubowska, A. & Wojciechowski, M. S. (2014).
The effects of dietary cholesterol on metabolism and daily torpor patterns in Siberian
hamsters. Physiological and Biochemical Zoology 87, 527–538.

*Jensen, I. M. (1983). Metabolic rates of the hairy-tailed mole, Parascalops breweri

(Bachman, 1842). Journal of Mammalogy 64, 453–462.
*Johansen, K. (1961). Temperature regulation in the nine-banded armadillo (Dasypus

novemcinctus mexicanus). Physiological Zoology 34, 126–144.
*Johansen, K. & Krog, J. (1959). Diurnal body temperature variations and

hibernation in the birchmouse, Sicista betulina. American Journal of Physiology 196,
1200–1204.

Biological Reviews 93 (2018) 404–438 © 2017 Cambridge Philosophical Society



428 Genoud Michel, Karin Isler and Robert D. Martin

*Johnson, G. S. & Elizondon, R. S. (1979). Thermoregulation in Macaca mulatta:

a thermal balance study. Journal of Applied Physiology. Respiratory, Environmental and

Exercise Physiology 46, 268–277.
*Johnson, M. S., Thomson, S. C. & Speakman, J. R. (2001). Limits to sustained

energy intake. II. Inter–relationships between resting metabolic rate, life-history
traits and morphology in Mus musculus. Journal of Experimental Biology 204, 1937–1946.

*Johnstone, A. M., Rance, K. A., Murison, S. D., Duncan, J. S. & Speakman,
J. R. (2006). Additional anthropometric measures may improve the predictability
of basal metabolic rate in adult subjects. European Journal of Clinical Nutrition 60,
1437–1444.

*Jones, D. L. & Wang, L. C.-H. (1976). Metabolic and cardiovascular adaptations
in the western chipmunks, genus Eutamias. Journal of Comparative Physiology B 105,
219–231.

*Kabat, A. P., Rose, R. W. & West, A. K. (2003). Non-shivering thermogenesis in a
carnivorous marsupial, Sarcophilus harrisii, in the absence of UCP1. Journal of Thermal

Biology 28, 413–420.
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*Riek, A., Körtner, G. & Geiser, F. (2010). Thermobiology, energetics and activity

patterns of the eastern tube-nosed bat (Nyctimene robinsoni) in the Australian tropics:
effect of temperature and lunar cycle. Journal of Experimental Biology 213, 2557–2564.

*Rigaudière, N. (1969). Les variations saisonnières du métabolisme de base et de la
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*Tähti, H. (1978a). Periodicity of hibernation in the hedgehog (Erinaceus europaeus L.).

Seasonal respiratory variations with special reference to the regulations of Cheyne–Stokes respiration.
PhD Thesis: University of Helsinki, Helsinki, Finland.
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