Mountain regions are globally important areas for biodiversity but are subject to multiple human-induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high-elevation, mountain specialist and generalist species, based on the proportion of their breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long-term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta-analysis did not find a consistent direction in elevation change. A meta-analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both
species already present, and for expected colonizing species that are losing habitat and climate space at lower elevation. However, developing effective management actions requires an improvement in the current knowledge of mountain species ecology, in the quality of climate data and in understanding the role of interacting factors. Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. Scientists should provide valuable tools to assess the status of mountain birds, for example through the development of a mountain bird population index, and policy-makers should influence legislation to develop efficient agri-environment schemes and forestry practices for mountain birds, as well as to regulate leisure activities at higher elevations.

Keywords: avian physiology, biotic interactions, conservation, elevation shift, global warming, high-elevation species, interspecific competition, phenology, population dynamics, projections, snow, trophic mismatch.

Climate change has been recognized, alongside modifications in land use, as a key driver of global change in biological diversity (e.g. IPCC 2007, Ameztegui et al. 2016), and there is now a large body of evidence that animals and plants are responding to climate change through shifts in distribution (e.g. Chen et al. 2011), changes in population size (e.g. Stephens et al. 2016) and changes in phenology leading to inter-linked effects at different trophic levels (e.g. Both et al. 2006, Thackeray et al. 2016). Such effects vary geographically, and biodiversity in temperate, boreal and Arctic regions is considered particularly vulnerable, with greater warming at higher latitudes (e.g. Meehl et al. 2007). Furthermore, rates of warming and frequency of extreme cold events are more pronounced at higher elevations (Beniston & Rebetez 1996, Liu & Chen 2000, Pepin et al. 2015). As a result, high-elevation areas are particularly threatened, as they are more susceptible to changes in climate (Diaz et al. 2003, Böhning-Gaese & Lemoine 2004, La Sorte & Jetz 2010).

Mountain and high-latitude upland regions (henceforth ‘mountains’) cover around 25% of the Earth’s surface (Kapos et al. 2000). They support one-quarter of terrestrial biodiversity (Körner & Ohsawa 2006) and contain nearly half the world’s biodiversity hotspots (Myers et al. 2000). These are complex ecosystems of high conservation value, as they encapsulate a high diversity of small-scale habitats dictated by different topoclimates within narrow elevation gradients (Körner & Ohsawa 2006). As a result, mountains accommodate high levels of species diversity with heterogeneous communities adapted to specific environmental conditions that change along the elevation gradient, including climate and other abiotic factors such as slope, exposure, solar radiation, wind direction and substrate (Körner & Spehn 2002, Nagy & Grabherr 2009, Viterti et al. 2013, Boyle & Martin 2015). For example, marked changes occur over short distances, with temperature varying in temperate regions on average by 0.6 °C every 100 m elevation (Dillon et al. 2006). Aspect can also influence temperature, with greater solar radiation on southern than northern slopes in the Northern Hemisphere (Nagy & Grabherr 2009). Global warming is causing changes to these environments, with documented responses including the upward advance of the treeline and a general increase in dominance of woody deciduous shrubs at high elevations (Gehrig-Fasel et al. 2007, Myers-Smith et al. 2011).

Many unique ecological features of temperate mountain systems also arise from the strong seasonality in temperatures which result in a very short growing and reproductive season, typically less than 3 months in alpine-arctic and boreal habitats (Nagy & Grabherr 2009). Strong inter-annual variations in temperature, precipitation and snow cover regimes are also observed in these systems (IPCC 2013, Klein et al. 2016) with changes in the timing, quantity and duration of precipitation likely to influence mountain habitats and biodiversity (Beniston et al. 2003, IPCC 2013, Martin et al. 2017). Snow cover has insulating properties, protecting plants and invertebrates from frost during the coldest months of the year and thereby influencing survival rates of many slow-growing high-elevation plants, insects and mammals (Hägvar 2010, Wipf & Rixen 2010, Berteaux et al. 2017). Snow cover in the Northern Hemisphere
has declined since the 1920s, particularly in spring and summer (IPCC 2007).

Although often perceived as true wildlands, mountain ecosystems typically have a long history of human activity, especially in Europe and Asia (FAO 2015). Twenty per cent of the global human population inhabits mountain regions, with about 8% living above 2500 m (Körner & Ohsawa 2006). However, mountains provide essential ecosystem services, including nearly half of the human population’s water supply, carbon storage and sequestration (forests and peatlands) and natural resources (timber, productive soils and medicinal plants; Körner & Ohsawa 2006). Mountains are also very important in terms of leisure and tourism activities (skiing, snowboarding, hiking, biking, wildlife watching and hunting). Mountain systems are thus continuously subject to landscape changes due to human activities, which might have even more severe consequences than climate change itself (Jetz et al. 2007) or which could potentially exacerbate climate effects (Mantyka-Pringle & Rhodes 2012).

Among birds, changes in climate have been reported to influence migration timing (Hüppop & Hüppop 2003, Knudsen et al. 2011), breeding output (Crick et al. 1997, Laaksonen et al. 2006), population size (Sæther et al. 2000, Townsend et al. 2016) and changes in elevational (Reif & Flousek 2012) and latitudinal (Hickling et al. 2006, Zuckerberg et al. 2009) distributions. Because the severity of climate change varies over the Earth’s surface (e.g. Meehl et al. 2007), avian responses may also vary in intensity depending on their geographical distribution. Birds may exhibit rapid distributional responses to climate fluctuations, for example tracking changes in surface temperature latitudinally (Hickling et al. 2006, Zuckerberg et al. 2009). However, there is also evidence that range shifts in birds are lagging behind climate change (Devictor et al. 2008, Ralston et al. 2017), potentially due to asynchronous phenology of birds and their prey (e.g. Mayor et al. 2017). Species inhabiting high-elevation mountain systems often exhibit a high degree of habitat specialization and unique ecological traits within narrow thermal ranges (Reif & Flousek 2012, Reif et al. 2015, Mahon et al. 2016, Pacifici et al. 2017, Scridel et al. 2017a). Adapting to rapid climate change may be particularly challenging along the elevation gradients of many mountains, where temperatures and area decrease monotonically with elevation (Elsen & Tingley 2015). As a result, species tracking rising temperatures in these systems are predicted to decline according to the species–area relationship (Preston 1962) as populations become isolated and thus increasingly vulnerable to stochastic events (Lande 1993, Bech et al. 2009, Fjeldså et al. 2012). A successful shift into a new area by a species is possible only when abiotic as well biotic requirements are fulfilled (Martin 2001a, Heikkinen et al. 2007, Wilson & Martin 2012). Given the fast rate of warming, species might have to track temperatures in areas where their associated habitat and resources require longer to establish (e.g. mature trees, alpine and sub-nival plants; Engler et al. 2011, Reif & Flousek 2012, Brambilla & Gobbi 2014) or where suitable habitat formation cannot occur due to constraints of other factors such as soil processes or rock substrate (Freppaz et al. 2010) or by direct human activities (e.g. deforestation; Nogués-Bravo et al. 2008, Patthey et al. 2008, Kohler et al. 2014, disturbance via outdoor recreation; Arlettaz et al. 2007, 2015). Finally, climate effects coupled with negative synergistic changes in land use might pose even more severe constraints on adaptation of mountain birds to future climate conditions.

Due to the documented general responses of birds and the more extreme climate changes observed in mountains, it seems reasonable to expect that mountain birds may be particularly threatened by climate change. In this review, we assess the existing evidence for direct and indirect effects of climate change on mountain birds in the Holarctic region (Heilprin 1887) and we evaluate their future conservation prospects. We address six specific objectives: (1) to define mountain generalist and high-elevation specialist birds for the Holarctic region; (2) to review the impacts of climate change on mountain birds through a summary of the literature, and a quantification of general responses throughout the Holarctic, including a meta-analysis; (3) to review and quantify projected impacts from future climate change scenarios using a meta-analysis; (4) to assess stressors that are likely to interact with climate change in affecting birds living at high elevations; (5) to review proposed conservation actions; and (6) to identify current gaps and future priorities for research.
METHODS

Defining mountain birds

Mountain systems and species inhabiting them are difficult to describe geographically and ecologically, and definitions may not apply consistently across the globe (Strahler 1946, Gerrard 1990, Körner 2012, Scridel 2014). To assess the status of mountain birds, it was first necessary to define mountain areas and habitats. Using elevation thresholds to define these regions would immediately exclude older and lower mountain systems, such as the Urals, Scottish Highlands and Appalachians, and include areas with little topographic relief and few environmental gradients (e.g. large, high-elevation plateaux). Using slope as a criterion on its own or in combination with elevation may resolve the latter problem, but not the former. For these reasons, we adopted the definition of Kapos et al. (2000), who classified mountain systems in seven classes on the basis of elevation, slope and local elevation range (Fig. 1). The last criterion is particularly useful as it identifies lower elevation mountain ranges (300–1499 m) by defining a radius of interest (5 km) around each grid cell (30 arc-second) and measuring the maximum and minimum elevation within a particular neighbourhood and their difference. This allows the identification of areas that occur in regions with significant relief, even though elevations may not be especially high (Kapos et al. 2000). This is a broad definition which includes high-latitude ‘upland’ habitats at relatively lower elevations, as well as mountain forest, the alpine belt (the treeless region between the natural climatic forest limit and the snow line) and the nival belt (the terrain above the snowline). The last is defined as the lowest elevation where snow is commonly present all year round (Kapos et al. 2000, Körner & Ohsawa 2006). Hereafter, we refer to ‘mountain regions’ as those as defined by Kapos et al. (2000).

We developed a broad definition of Holarctic mountain birds based on the proportion of their Holarctic breeding range that was within the defined mountain regions in order to assess the evidence base for impacts of climate change on birds largely restricted to mountains as a breeding habitat. We stress that we are interested in all bird species occurring in Holarctic mountain regions, including species that also occur in a range of habitats, rather than only focusing on high-elevation specialist species. We used a geographical information system (GIS) software (GRASS, GRASS Development Team 2015; QGIS, Quantum GIS Development Team 2015) to restrict the map of Kapos et al. (2000) to the Holarctic realm and imposed over it the breeding range of global bird species (n = 10 280 species; BirdLife International & NatureServe 2015). We defined as ‘high-elevation mountain specialist’ a species for which at least 50% of its range was in the higher elevation classes 1–4 of Kapos et al. (2000). We further defined a ‘mountain generalist’ as a species for which at least 50% of its entire breeding range was

![Elevation classes](image-url)

Figure 1. Mountain systems classified by Kapos et al. (2000) and adapted to the Holarctic region (above the Tropic of Cancer – grey line). The upper three classes (‘CL’) are delimited purely by elevation (≥ 2500 m). Areas below 2500 m were classified additionally in terms of slope, terrain roughness and local elevation range (LER).
within the defined Holarctic mountain region (i.e. classes 1–7 of Kapos et al. 2000) and which was not classed as a high-elevation mountain specialist. These definitions therefore identify which species are particularly associated with mountains over the whole Holarctic region. There are many species (e.g. Western Capercaillie Tetrao urogallus, Eurasian Pygmy Owl Glaucidium passerinum, Rock Ptarmigan Lagopus muta), termed boreo-alpine taxa, that occur in mountains at low latitudes (e.g. European Alps) but are also present at higher latitudes but lower elevations (e.g. northern Europe). The definition adopted here seeks to identify species linked more closely with mountains per se (for example due to topography or particular habitat types) across a broad region. We use the terms ‘high-elevation mountain specialist’ and ‘mountain generalist’ when specifically referring to our classification. We use the term ‘mountain bird’ to refer to any species occurring in our defined Holarctic mountain region, which also includes species that breed in other habitats and at a range of elevations across their geographical range.

Literature survey

We conducted the literature search using ISI Web of Knowledge (www.webofknowledge.com). To obtain relevant studies we used the following keywords: (bird* OR avian*) AND (mountain* OR montane* OR upland* OR alpine* OR moorland* OR arctic* OR polar* OR altitude* OR elevation*) AND (climate change* OR global warming*) NOT tropic*. The search period was from 1950 until 31 December 2016. Papers identified from this search were subsequently included if they concerned research wholly or partly carried out within the defined mountain regions or if the study species was/were defined as a high-elevation mountain specialist or mountain generalist (see Tables S1 and S4). The latter group of studies included some broad-scale analyses that were not focused specifically on mountains but which considered some high-elevation mountain specialists (typically analyses covering large regions, for example based on national atlases). In total, 764 studies were initially identified. We read the abstracts of each of these papers to determine whether it was relevant for the purposes of this review and eliminated 591 studies at this stage. We also checked the remaining 173 papers for other relevant references missed in the first search. This identified a further 61 relevant papers, giving a total of 234. We assigned these to eight broad topics: (1) climate change, physiological constraints and life history strategies; (2) links between climate and population dynamics; (3) changes in phenology; (4) trophic linkages; (5) observed evidence of elevation shift; (6) projected elevation shifts; (7) interactions between climate change and other drivers (agriculture, grazing and forestry, leisure and other threats, interspecific interactions); and (8) conservation and policy papers. We used the standardized literature search to summarize the main trends in the resulting database with respect to location and topic, and with respect to analysis of elevation shifts and future projections of species’ geographical range and population size. We conducted two meta-analyses: one testing whether mountain birds have shifted in elevation to track suitable climate and a second to test whether climate changes will have greater effects on mountain than on non-mountain birds according to projected distribution range and population size. We also used the selected papers, in conjunction with the wider literature, as the basis of a qualitative review to highlight the key issues and findings.

Current and future elevation shifts in bird populations

We considered for meta-analyses papers that presented estimates for shifts in species distributions over time in relation to elevation if they focused, either wholly or mostly, on the defined mountain regions. Given that conditions may change rapidly over small distances in mountains due to the steep topography, smaller-scale studies are more appropriate than larger-scale atlas studies in tracking species distributions (Chamberlain et al. 2012). Thus we focused on studies with a maximum sampling unit area of 1 km². We collated additional data for each study on the period considered (in years), the elevation range (in metres) and the estimated mean annual rate of temperature change (°C/year) over the period considered. Similarly, we considered papers that predicted future effects of climate change on mountain birds if they were largely restricted to mountain areas, if they estimated a proportional change in geographical distribution or population size over time and if the sample size of the underlying dataset on which models were based was presented. We also
recorded the period over which projections were made and the climate change scenarios considered, which were classed as either ‘severe’ (scenarios A2 and A1F1 or RCP8.5) or ‘moderate’ (all other scenarios and RCPs; IPCC 2007, 2013).

Statistical analysis

For elevation shifts, we included papers in the meta-analysis only if sample sizes and test statistics were presented or if parameter estimates (including mean shift) and standard errors, standard deviations or confidence limits were reported. In cases where only estimates of change in elevation and errors were presented (i.e. without any test statistics), we derived z-scores, testing against a hypothesis of zero change. In common with standard meta-analytical approaches (e.g. Koricheva et al. 2013), the goal was to estimate standardized responses of elevation shifts in bird distributions over time from studies that used a diversity of measurement methods. In most cases, the shift was measured as the change, in metres, of the distribution of a given species (sometimes a group of species) between two time periods. However, some papers also tested the effect of the interaction between elevation and time period on the probability of species presence, a significant interaction indicating a significant shift over time (e.g. Reif & Flousek 2012, Mizel et al. 2016).

Shifts in species distributions had been tested using a variety of methods in the above papers. The different test statistics (e.g. F, t, χ²) presented in these papers were converted to Pearson’s r using standard conversion formulae (Lajeunesse 2013) so that effect sizes (i.e. change in elevational distribution over time) could be compared across studies (further details are given in Table S2; meta-analysis methods). Positive values indicate an upslope shift in elevation over time. Pearson’s r-values were not normally distributed, so prior to analysis, we transformed standardized Pearson’s r-values from each study using Fisher’s Z transformation to derive both normalized estimates and their variance (as per Musitelli et al. 2016).

We derived parameter estimates of standardized elevation shifts by analysing Z-transformed Pearson’s r-values (henceforth ‘standardized effects’) and 95% confidence intervals based on linear mixed effects models using the nlme package in R (Pinheiro et al. 2017). The analytical unit was the estimate for a given species or group of species (some papers estimated shifts for the whole community). We therefore included ‘study’ as a random effect to account for multiple estimates derived from the same paper and ‘family’ as a random effect to account for the potential phylogenetic dependence of closely related species (or multiple observations from the same species). We weighted models according to the inverse of the variance of standardized effects and considered an effect as significant if confidence intervals on the parameter estimate did not overlap zero. To derive a single overall estimate of shift, no fixed effect was included (i.e. an intercept-only model). A significant effect of the intercept in this case would indicate a consistent standardized effect in terms of elevation shift across studies and species. We then tested study duration and rate of temperature change by including each as a fixed effect in the model.

Papers that made future projections of species distributions or abundances did not typically present significance tests, so we could not estimate standardized effect sizes. Instead, we analysed the mean percentage change in the response variable (either range size or a measure of population size). The response variable was approximately normally distributed. The model structure was similar to that for observed elevation shifts in that initially we specified an intercept-only model with ‘study’ and ‘family’ as random effects and then tested further fixed effects (high-elevation specialist or generalist species, period over which projections were made, climate change scenario). We specified the sample size of the initial input data as a weight in the model statement, the assumption being that models based on a larger sample size are likely to be more reliable than those based on small sample size. Confidence intervals of estimates that did not overlap zero were taken as evidence of consistent effects of future projections of elevation shifts.

RESULTS

The literature review considered 234 articles relevant to climate change across various mountain regions of the Holarctic (Table 1). In Europe, most studies occurred in the Alps and Pyrenees (n = 45), followed by Fennoscandia (n = 25) and the uplands of Britain and Ireland (n = 24). Many studies were also carried out in North America (n = 75), particularly in the Rocky (n = 14) and Appalachian (n = 10) Mountains, whereas only
seven studies were carried out in Holarctic Asia. There were 26 papers included that investigated climate change impacts on bird communities at a global scale. The number of published studies according to our search criteria increased considerably over time, from one study in 1991 to 48 studies published in 2016 (Fig. 2).

The most commonly investigated climate change-related topic was the general ecology and physiology of mountain bird species \((n = 61; \text{Fig. 3})\), followed by papers that tested for effects of climate change on changes in population trends, elevation or latitude shifts or changes in community composition \((n = 57)\). Papers investigating future prospects of species according to various climate scenarios were also frequent \((n = 47)\). The least studied category involved studies that investigated interspecific or synergistic interactions between climate changes and other environmental or ecological factors \((n = 4)\).

Mountain birds of the Holarctic region

We identified 2316 bird species breeding in the Holarctic realm, 818 \((35.3\%)\) of which were defined as either high-elevation mountain specialists \((n = 324 \text{ species})\) or mountain generalists \((n = 494 \text{ species})\). The most frequent Order of birds in both groups was Passeriformes \((n = 333 \text{ species}; \text{high-elevation specialist } n = 256 \text{ species})\), followed by Piciformes for generalists \((n = 29)\) and Galliformes for high-elevation specialists \((n = 27); \text{a complete list of the 2316 species is provided in Table S4})\). A great proportion of the high-elevation specialists breed almost exclusively on the Tibetan plateau (i.e. Tibetan Babax *Garrulax koslowi*, Tibetan Rosefinch *Carpodacus roborowskii*) or have a large proportion of their breeding range confined to this region (i.e. Bearded Vulture *Gypaetus barbatus*, Wallcreeper *Tichodroma muraria*, Twite *Carduelis flavirostris*). Examples of non-Tibetan high-elevation specialists were few and generally displayed a restricted breeding distribution confined to the lowest class that defines high-elevation specialists (class 4; Fig. 1) and at the southern-most range of the Holarctic realm (i.e. Maroon-fronted Parrot *Rhynchopsitta terrisi*, White-naped Swift *Streptoprocne semicollaris*, Black Rose Finch *Leucosticte atrata*). Generalist mountain birds occur across various Holarctic mountain ranges, from the Tibetan Plateau and European Alps to the Pacific Mountain System in North America.
Comparing the list of mountain birds across 232 relevant articles from the literature search (no information was available for two articles) revealed that almost all generalist (97%; \(n = 453/464 \)) and high-elevation specialist species (96%; \(n = 311/324 \)) have been investigated in the literature. The three generalist species most frequently studied are Black Redstart *Phoenicurus ochruros* (\(n = 32 \) studies), Water Pipit *Anthus spinoletta* and Ring Ouzel *Turdus torquatus* (\(n = 31 \) each). For high-elevation specialists, the most frequently studied species were White-winged Snowfinch *Montifringilla nivalis* (\(n = 22 \)), Alpine Chough *Pyrrhocorax graculus* (\(n = 20 \)) and Wallcreeper (\(n = 13 \)). However, when excluding studies based solely on distributional data (e.g. species distribution models), meta-analysis and reviews, only 2% (\(n = 7/324 \)) of high-elevation mountain specialists and only 14% (\(n = 67/494 \)) of mountain generalist species had been investigated. This suggests that fine-scale studies on species ecology are scarce for these species.

Climate change, physiological constraints and life history strategies

Birds breeding in mountain systems have evolved complex physiological, behavioural and morphological adaptations (Dragon *et al.* 1999, Cheviron & Brumfield 2012). Adaptations to prevent heat loss rely particularly on insulation, for example by producing a denser coat of feathers (Broggi *et al.* 2011) and by exhibiting a greater body mass than lower-elevation conspecifics (Bergmann’s rule; Ashton 2002). Physiological constraints are likely to be major determinants of how species respond to climate change. For example, Root *et al.* (2003) found that more than 80% of the species from various taxa and habitats that showed changes linked to global warming shifted geographically in the direction expected from known physiological constraints. Birds with physiological responses that are tightly coupled to specific environmental conditions (such as mountain species) are believed to be particularly sensitive to changes in climate, but little has been done to test whether these adaptations (especially morphological) are counterproductive in a warming climate. Anecdotal evidence and the limited literature available suggest there may be costs to higher temperatures for species such as Rock Ptarmigan, Ring Ouzel and White-winged Snowfinch, which have been observed panting and bathing in water or snow during hot sunny days in the Swiss Alps and Scottish Highlands (Glutz von Blotzheim *et al.* 1973, D. Scridel pers. obs.). Johnson (1968) found...
that White-tailed Ptarmigan *Lagopus leucurus* began panting at 21 °C. The above studies did not establish whether these behavioural changes were sufficient to prevent reduced survival or reproduction in warming conditions.

A species’ life history strategy may be crucial in responding to climate alterations. Patterns along elevation gradients have highlighted that populations of the same species confined to higher elevations have slower life-history strategies (fewer nesting attempts, lower clutch size) compared with populations at lower elevation (Boyle et al. 2016). Higher nest survival has been found for higher elevation populations, which may partially compensate for the reduction in potential fecundity. Boyle et al. (2016) did not record a pattern of significant differences in body mass, egg or nesting size, or survival between paired populations of bird species breeding at high and low elevation. Tingley et al. (2012), however, found that species were more likely to shift their elevation range in the Sierra Nevada (USA) if they had smaller clutches, defended all-purpose territories and were residents or short-distance migrants, although these involved both upslope and downslope shifts. So it is possible that higher-elevation species may be more threatened by climate change than lower-elevation species due both to their morphological adaptations to cooler systems (e.g. insulation) and their life history strategies. However, future work is required to elucidate these ideas.

Links between climate and population dynamics

Although not specifically addressing climate change, several studies have indicated that fluctuations in climate influence demographic rates in mountain birds, thus implying potential climate change effects. In several cases, increasing temperatures may increase reproductive output. Sæther et al. (2000) demonstrated that increases in winter temperature (together with population density) positively affected White-throated Dipper *Cinclus cinclus* dynamics in the upland regions of southern Norway. Cold winters caused low recruitment and a decrease in population size associated with the amount of ice cover, which impaired foraging opportunities. Novoa et al. (2008) demonstrated that weather variables during both pre-laying and post-laying influenced reproductive success in Rock Ptarmigan in the French Pyrenees. Reproductive success was positively associated with early snow-free patches, but rainfall had negative effects, particularly after hatching. Novoa et al. (2016) also found positive effects of snow-melt on Rock Ptarmigan, but the intensity of the effect varied with respect to the geographical region considered (i.e. Alps vs. Pyrenees). Drier and cooler weather favoured nest survival of Mountain Plovers *Charadrius montanus* over a 7-year period (Dreitz et al. 2012).

There is also evidence for negative effects of climate on demographic parameters. Barnagaud et al. (2011) showed that winter and summer NAO (North Atlantic Oscillation) affects several indicators of breeding success of Black Grouse *Tetrao tetrix* in the French Alps, particularly during years of extreme weather. Interestingly, birds showed some acclimatization, being able to optimize their reproductive output in relation to the NAO index, but they performed particularly badly when extreme weather events occurred. Twenty-five years of prolonged spring warming was also associated with low breeding success in a Scottish population of Western Capercaillie (Moss et al. 2001).

In mountain systems, bird response to temperature may vary at both small and large scales. For example, Water Pipits select nest-sites with the particular species characteristics based on their accessibility to predators, snowfall and microclimate, with the latter two influencing nestling rearing periods and survival (Rauter et al. 2002). Because snowfall and predation pressure vary over time and space, it is possible that large-scale factors also influence species choices. The relative importance of small- and large-scale weather effects is still unclear, as these seem to vary between species, populations, seasons and time periods considered. Ptarmigan exemplify such complex responses: even though they have been considered indicators of temperature-induced effects on mountain biodiversity (Novoa et al. 2008, Wilson & Martin 2010, Imperio et al. 2013), some studies have shown little effect of climate change on their demography (Sandercock et al. 2005, Novoa et al. 2016). In one study by Wang et al. (2002), local minimum winter temperatures had a stronger effect on White-tailed Ptarmigan population dynamics than large-scale indices like NAO. On the other hand, Wann et al. (2014) found that the same species in the same study area responded to climate effects over a
longer period when a 2-year lag time was considered. This nuanced evidence highlights the importance of testing both small- and large-scale weather predictors, and in particular focusing more studies on lagged effects of NAO on demographic parameters of mountain species.

Changes in phenology

Among birds, climate change has affected the phenology of many species, leading to changed timing of breeding and migration (e.g. Crick et al. 1997, Rubolini et al. 2007), which in some cases has led to population declines when phenological trends are mismatched with those of their key food resources (e.g. Both et al. 2006). Such mismatches are hypothesized to underpin the declines in many long-distance migrant species in the western Palaearctic (e.g. Möller et al. 2008). However, in the Fennoscandian mountains, Lehikoinen et al. (2014) found that long-distance migrants on average declined less than residents and short-distance migrants, suggesting the latter were more sensitive to climate change impacts.

Few studies have shown changes in mountain bird phenology explicitly linked to climate change. Timing of breeding in Mexican Jays *Aphelocoma wollweberi* has advanced in line with climate changes in the Chiricahua Mountains of Arizona (Brown et al. 1999). Inouye et al. (2000) found that American Robins *Turdus migratorius* in the Colorado Rocky Mountains arrived 14 days earlier over a 19-year period. However, local conditions (e.g. the average date of snowmelt) did not change at the study site, resulting in a 65-day gap between the first Robin sighting and date of snowmelt and suggesting that American Robins may have to cope with an extended pre-breeding period at higher elevation. Indeed, the extent, duration and timing of snow cover are likely to be important factors acting on the phenology of mountain birds in general. For birds in the European Alps and North American mountains, patterns in breeding season phenology are typically tied to the snowmelt (e.g. Novoa et al. 2008, Imperio et al. 2013, García-González et al. 2016). There is evidence that responses to changes in snowmelt phenology vary between species and populations. Martin and Wiebe (2004) compared White-tailed Ptarmigan and Willow Ptarmigan *Lagopus lagopus* breeding in alpine and Arctic environments, respectively, and found that extreme weather events greatly reduced breeding success in both species. In average years, breeding parameters of White-tailed Ptarmigan were not correlated with snowmelt phenology, suggesting a constraint in adjusting their reproductive phenology to a changing environment. Willow Ptarmigan, however, tracked local conditions, breeding earlier in years of early snow melt (Hannon et al. 1988, Martin & Wiebe 2004). Similarly Novoa et al. (2016) found that the median hatching date for Rock Ptarmigan was significantly correlated with the date of snowmelt in the French Alps but not in the Pyrenees. None of the above studies found trends over time linked to climate change, but it can be inferred that climate change acting on snow melt phenology could affect these species in the future, especially given that snow melt has occurred progressively earlier, and snow cover has declined in extent in the northern hemisphere (IPCC 2007).

Trophic linkages

Global warming may influence the distribution and abundance of invertebrate communities directly (Grigaltchik et al. 2012) or indirectly via the modification of suitable habitat conditions (e.g. soil desiccation, changes in vegetation communities; Carroll et al. 2015). However, little investigation of the links between such changes and bird populations has been done. Most of the evidence comes from the British uplands. Pearce-Higgins et al. (2010) demonstrated how abundance of adult crane flies (Diptera: Tipulidae), a keystone group in many mountain systems, was negatively correlated with August temperatures in the previous year and how, in turn, changes in the European Golden Plover *Pluvialis apricaria* populations were negatively correlated with August temperatures 2 years earlier. Fletcher et al. (2013) also concluded that low temperatures in May (a surrogate for late cranefly emergence; Pearce-Higgins et al. 2005) positively influenced Red Grouse *L. lagopus scotica* chick survival. These findings suggest that continued warming would have negative effects on these species.

We found only one study considering the role of climate change on plant food sources for mountain birds. Santisteban et al. (2012) correlated declines in adult survival of Cassia Crossbill *Loxia sinesciuris* with increasing temperatures in South
Hills and Albion Mountains (USA). The most supported explanation was that Lodgepole Pine *Pinus contorta* seed availability varied with temperature, where with increasing temperatures, trees prematurely shed their seeds, reducing the carrying capacity for Cassia Crossbill breeding later in the year. The warmer springs and increased precipitation in Europe will also influence food availability and the future geographical distribution for European Crossbill species (Common Crossbill *Loxia curvirostra*, Parrot Crossbill *Loxia pytyopsittacus*, Scottish Crossbill *Loxia scotica*) (Mezquida et al. 2017).

Snow patches can represent an important foraging habitat, providing both arthropod fallout and suitable sites at their margins for the collection of soil invertebrates, particularly during the nesting and rearing period of many mountain birds. These include White-winged Snowfinch, Snow Bunting *Plectrophenax nivalis*, Horned Lark *Eremophila alpestris* and Alpine Accentor *Prunella collaris* (Antor 1995, Camfield et al. 2010, Brambilla et al. 2016, 2017b, Rosvold 2016). In some extreme cases, birds may even choose to nest directly in glaciers (White-winged Diuca Finch *Diuca speculifera*; Hardy & Hardy 2008) or in very close proximity (Grey-crowned Rosy Finch *Leucosticte tephrocotis*, Johnson 1965, Rosvold 2016, Brandt’s Rosefinch *Leucosticte brandti*, Potatov 2004) to capitalize on abundant supplies of insects. Changes in amount and duration of snow may therefore affect these species via food resources.

Where trees and shrubs have expanded their distribution upslope in response to increasing temperatures (Harsch et al. 2009, Myers-Smith et al. 2011), changes in invertebrate communities are expected. Ground- and canopy-dwelling arthropod communities have been assessed in the Arctic foothills of Alaska in relation to the presence of two passerine predators, Gambel’s White-Crowned Sparrow *Zonotrichia leucophrys gambellii* and Lapland Longspur *Calcarius lapponicus*. Predicted changes in shrub dominance are likely to favour White-crowned Sparrow nesting habitat and food (canopy-dwelling arthropods), whereas declines of Lapland Longspurs have been projected as a consequence of shrub encroachment and consequent reduced availability of ground-dwelling arthropods (Boelman et al. 2015).

Climate change may also affect more complex linkages across different trophic levels. Martin and Maron (2012) conducted an experiment showing that climate change in the form of reduced snowfall in mountains and allowing increased ungulate herbivory in winter can negatively affect diverse species interactions. They experimentally tested the hypothesis that declining snowfall, which enables greater over-winter herbivory by Elk *Cervus canadensis*, indirectly influences plants and associated bird populations in montane forests. When they excluded Elk from one of two paired snowmelt drainages and replicated this paired experiment across three distant canyons over a 6-year period, there was a reversal in the multi-decadal declines in plant and bird populations. These experimental results suggest that climate impacts can interact with other drivers of habitat change and strongly influence plant-animal and other ecological interactions.

Observed evidence of elevation shifts

Evidence exists, typically from broad-scale atlases of species distributions, that some species are shifting their geographical distributions to higher elevations in response to climate change, presumably tracking more suitable climate conditions (e.g. Auer & King 2014, Roth et al. 2014), although such effects are not universal (e.g. Zuckerberg et al. 2009, Tingley et al. 2012, Massimo et al. 2015). Furthermore, apparent elevation shifts may occur due to habitat deterioration or destruction at lower elevations (Archaux 2004, Bodin et al. 2013).

Few studies have considered elevation shifts in the distributions of Holarctic mountain birds. We found 10 relevant studies in our literature search that specifically considered elevation shifts in bird species distributions, partly or wholly in mountains (Table 2). Including papers that considered more than one study site (n = 13 sites from 10 papers), the mean period considered was 38 years ± 2.5 se (range 9–102) and the mean length of elevation gradients was 1970 m ± 76 se (range = 500–3400 m). There was little evidence of consistent patterns across the studies and a wide variation among species. In some cases, there were fairly consistent upward shifts in most species (e.g. Reif & Flousek 2012, Rocchia 2016) but other studies found that different species exhibited upward and downward shifts (Tingley et al. 2012, DeLuca & King 2017) or found shifts in only a small proportion of the species considered (Archaux 2004). Additionally, there was sometimes marked
Table 2. A summary of papers considering shifts in the elevation of bird species distributions in mountains over time. Papers were included if they were based on data carried out at relatively small scales (maximum 1-km²) which were wholly or partly in mountainous regions (as per Kapos et al. 2000). MA indicates whether a given study was included in the meta-analysis (Y) or not (N).

<table>
<thead>
<tr>
<th>Author</th>
<th>Location</th>
<th>Species</th>
<th>Sampling unit</th>
<th>Period</th>
<th>Temperature change (°C/year)</th>
<th>Elevation range (m)</th>
<th>MA</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaux (2004)</td>
<td>French Alps</td>
<td>All</td>
<td>Point count</td>
<td>1973-2002</td>
<td>0.05</td>
<td>350-3099</td>
<td>Y</td>
<td>41 site/species comparisons: 6 showed significant downwards shifts, 4 significant upwards shifts</td>
</tr>
<tr>
<td>DeLuca and King (2017)</td>
<td>Appalachian Mountains, USA</td>
<td>All</td>
<td>Point count</td>
<td>1993-2009</td>
<td>0.01⁷</td>
<td>740-1470</td>
<td>Y</td>
<td>9 of 16 low-elevation species shifted upwards; 9 of 11 high-elevation species shifted downwards</td>
</tr>
<tr>
<td>Maggini et al. (2011)</td>
<td>Switzerlandᵃ</td>
<td>All</td>
<td>1-km²</td>
<td>1999/2002-2004/07</td>
<td>0.09⁷</td>
<td>210-2710</td>
<td>N</td>
<td>Upwards shifts associated with shrub/tundra-nesting species; weaker evidence of upward shifts in forest species</td>
</tr>
<tr>
<td>Mizeletal. (2016)</td>
<td>Denali National Park, Alaska</td>
<td>Passerines</td>
<td>Point count</td>
<td>1995-2013</td>
<td>0.04</td>
<td>500-1200</td>
<td>Y</td>
<td>Mean elevation of Ptarmigan presence shifted upwards in 3 of 4 regions</td>
</tr>
<tr>
<td>Pernollet et al. (2015)</td>
<td>Swiss Alps</td>
<td>Ptarmigan</td>
<td>1-km²</td>
<td>1984-2012</td>
<td>0.1</td>
<td>1700-3100</td>
<td>Y</td>
<td>Weak overall upwards community shift; wide variation in the response of individual species</td>
</tr>
<tr>
<td>Popy et al. (2010)</td>
<td>Italian Alps</td>
<td>All</td>
<td>1-km²</td>
<td>1992/94-2003/05</td>
<td>0.08</td>
<td>550-2556</td>
<td>Y</td>
<td>Significant overall mean shifts to higher elevations; open-habitat shifted more than forest species</td>
</tr>
<tr>
<td>Reif and Flousek (2012)</td>
<td>Giant Mountains, Czech Republic</td>
<td>All</td>
<td>Point count</td>
<td>1986/88-1996/98</td>
<td>0.12</td>
<td>400-1602</td>
<td>Y</td>
<td>Woodland species tended to show range expansion, higher-elevation grassland species range retraction; regional variation</td>
</tr>
<tr>
<td>Rocchia (2016)</td>
<td>Italian Alps</td>
<td>All</td>
<td>Point count</td>
<td>1982-2012</td>
<td>NA</td>
<td>600-4000</td>
<td>N</td>
<td>Significant overall mean shifts to higher elevations; open-habitat shifted more than forest species</td>
</tr>
<tr>
<td>Tingley et al. (2012)</td>
<td>Sierra Nevada, USA</td>
<td>All</td>
<td>Point count</td>
<td>1911/28-2003/09</td>
<td>NA</td>
<td>61-3356</td>
<td>N</td>
<td>Shifts were heterogeneous within species and among regions; both temperature and precipitation likely to be important drivers</td>
</tr>
<tr>
<td>Tryjanowski et al. (2005)</td>
<td>Tatra Mountains, Poland</td>
<td>White Stork</td>
<td>Nest location</td>
<td>1974-2003</td>
<td>0.08</td>
<td>400-900</td>
<td>Y</td>
<td>White Storks nested at progressively higher elevations</td>
</tr>
</tbody>
</table>

ᵃIncluded as the majority of the area of Switzerland is classed as mountainous by Kapos et al. (2000). ⁷Annual temperature – others are spring temperatures. ⁸Passerines and five other families (Odontophoridae, Phasianidae, Columbidae, Trochilidae and Picidae).
variation in species’ responses between geographical locations within the same study (Tingley et al. 2012, Pernollet et al. 2015).

Our meta-analysis supports the lack of consistent trends apparent in Table 2. There were 203 estimates of elevation shift from seven published studies analysed, five from Europe and two from North America. Pooling all estimates across the studies, there was no strong support for a general shift towards higher elevations (parameter estimate \(\hat{\delta} = 0.083 \pm 0.052 \), 95% Cl −0.018 to 0.184). Shifts towards higher elevations were more positive when rates of temperature change were higher (estimate \(\hat{\gamma} = 0.543 \pm 0.152 \), 95% Cl 0.245–0.841). Duration of study had an unexpected negative effect on shifts, studies over longer time spans resulting in more downward shifts (estimate \(\hat{\gamma} = -0.026 \pm 0.004 \), 95% Cl −0.034 to −0.018). The above findings were robust to different model structures and different subgroups of species (Table S3).

Most studies in Table 2 also considered temperature variations over the same period, either modelling them in relation to bird distributions (Archaux 2004, Popy et al. 2010, Reif & Flousek 2012, Tingley et al. 2012, Pernollet et al. 2015, Rocchia 2016) or considering climate trends over the same periods (Maggini et al. 2011, Mizel et al. 2016). In most cases, trends in elevation shifts matched temperature trends over the same period, with a few exceptions (Pernollet et al. 2015, Mizel et al. 2016). Tingley et al. (2012) found a broad range of responses of bird species along elevation gradients in the Sierra Nevada, due in part to differential responses to increasing temperature (exerting a general positive upwards shift) and increasing precipitation (exerting a general downslope shift). However, few other studies considered potential effects of precipitation (only Archaux 2004, Popy et al. 2010, Pernollet et al. 2015).

Changes in bird population trends along elevation gradients over time are similarly inconsistent across studies. Some find positive changes in lower-elevation species and negative changes in higher-elevation species that are consistent with elevation shifts, as lower-elevation species colonize mountains and higher-elevation species lose suitable habitat (Flousek et al. 2015). However, others have reported opposite (Archaux 2007) or inconsistent patterns (Zamora & Barea-Azcón 2015, Furrer et al. 2016). Tingley and Beissinger (2013) found a decrease in total species richness and in species richness of high-elevation species over time in the Sierra Nevada, despite heterogeneous shifts in individual species in the same area (Tingley et al. 2012). At wider scales, there is evidence that bird communities are shifting towards warm-dwelling species (Switzerland; Roth et al. 2014), but also that communities at higher elevations have lower ‘climate debt’ (the spatio-temporal divergence between temperature changes and community changes) as elevation increases (France; Gauzère et al. 2016).

Projected elevation shifts

Extinction risks are expected to increase following climate-induced elevation range shifts in the future (Sekercioglu et al. 2008, La Sorte & Jetz 2010). Shifting vegetation zones in mountains, in particular an advance of the treeline towards higher elevations, have been observed in many studies (e.g. Lenoir et al. 2008, Harsch et al. 2009). As a consequence, high-elevation specialists, in particular those of open, treeless habitats, are expected to be most threatened due to habitat loss or fragmentation (e.g. Chamberlain et al. 2013, Goodenough & Hart 2013, Siegel et al. 2014, Brambilla et al. 2016, 2017a). Nevertheless, some studies have also projected overall range loss in higher-elevation forest specialists (Braunisch et al. 2014, Brambilla et al. 2015). There were 95 estimates derived from 12 studies that satisfied the criteria to be included in the analysis (Table S2). There was a net prediction of negative impacts on species populations or distributions, although there was a degree of variability and confidence limits overlapped zero (estimate \(\hat{\delta} = -28.9 \pm 17.0\% \), 95% Cl −62.4 to 4.6). High-elevation mountain specialists and generalists were projected to be more negatively impacted than other species (mountain specialists and generalists = −76.1 ± 27.1%, 95% Cl −129.2 to −23.0; other = 29.8 ± 25.7%, 95% Cl −20.6 to 80.2). There was a tendency for greater negative impacts in severe than moderate scenarios (moderate = −26.6 ± 17.1%, 95% Cl −60.1 to 6.9; severe = −33.6 ± 17.5%, 95% Cl −67.9 to 0.7). There was no evidence of an effect of the number of years over which projections were made (−0.01 ± 0.79, 95% Cl −1.53 to 1.55). Re-running the models without weighting for sample size showed the same patterns, although results were less conservative (i.e. it was less likely that confidence intervals overlapped zero).
Interactions of climate change effects with other drivers of change

Land use
Disentangling the relative importance of climate effects and other drivers of environmental change that influence the persistence and maintenance of biodiversity has been a key issue across mountain regions (Mantyka-Pringle & Rhodes 2012, Cumming et al. 2014, Maggini et al. 2014, Elmhagen et al. 2015). It is also central to producing efficient, adaptive conservation frameworks for threatened species (Gehrig-Fasel et al. 2007, Gienapp et al. 2007, Eglington & Pearce-Higgins 2012, Titeux et al. 2016). For example, climate change and land use often interact in ways that influence biodiversity (Parmesan & Yohe 2003) and these interactions may amplify or reduce the magnitude of potential effects (Clavero & Brotons, 2010, Dreitz et al. 2012, Chamberlain et al. 2013, Oliver et al. 2017). Lehikoinen and Virkkala (2016) acknowledged a land use and species trait effect due to the high level of unexplained variation in models predicting the change in density of birds in relation to temperature change. Jetz et al. (2007) attempted to assess the relative importance of climate and land use changes using future scenarios. In that study, we identified 617 high-elevation mountain specialist or mountain generalist species. For these species, the predicted average percentage loss in geographical range due to land use change was 24.8 and 28.6% by the years 2050 and 2100, respectively. In comparison, the predicted loss due to climate change alone was 7.3 and 11.5%, respectively.

The interaction between climate and land use is particularly relevant to mountain habitats because they are experiencing a faster rate of climate change than the global average (Diaz et al. 2003, Nogués-Bravo et al. 2007) and are subjected to other landscape-scale anthropogenic changes (Arlettaz et al. 2007, 2015, Gellrich & Zimmermann 2007, Nogués-Bravo et al. 2008, Patthey et al. 2008, Braunisch et al. 2011, 2013, 2016, Douglas et al. 2015). However, land use change has only been rarely incorporated in analyses of distribution shifts; Reif and Flousek (2012) and Rocchia (2016) found that elevation shifts more closely matched temperature than habitat changes, Tryjanowski et al. (2005) found significant effects of both, whereas Popy et al. (2010) could not separate the effects of the two.

Agro-forestry and pastoral practices have shaped the landscape of Holarctic mountains in Europe and Asia, influencing the species composition and abundance of mountain birds (e.g. Gehrig-Fasel et al. 2007, Caprio et al. 2011, Douglas & Pearce-Higgins 2014, Wilson et al. 2014, Mollet et al. 2018). Over time, forest management has changed in intensity (e.g. clear-felling vs. single-tree selection), composition (planting of exotic conifers) and age dynamics (establishment of even-aged monocultures; Kirby & Watkins 2015). At the same time, climate change may be affecting forest bird assemblages either directly or indirectly by influencing cover, productivity and composition of forest systems. However, it is generally unclear which of these two pressures (climate change or forestry practices) is the most important driver in changes in bird distribution. Changes in forest composition could cause opposite shifts (i.e. downhill) to those forecast due to effects of climate warming (uphill). For example, Archaux (2004) suggested that changes in forest management that favoured coniferous at the expense of broadleaved trees might have caused forest birds to have shifted their mean elevation downwards. In other cases, there is evidence from boreal forests (including some mountain areas) that climate, in addition to vegetation type and management, is a crucial driver for determining passerine species distribution (Cumming et al. 2014, Frey et al. 2016). Virkkala (2016) found that forest management favoured passerine species benefiting from climate change, so that direct habitat alteration was connected to the indirect effects of climate change.

Climate variables can also be important for non-passerine species. Brambilla et al. (2015) found in the Italian Alps an important effect of climate in addition to habitat composition at the landscape scale in dictating the distribution of the cold-adapted Eurasian Pygmy Owl and Boreal Owl Aegolius funereus. Both of these forest species were predicted to undergo range contraction in the Alps as a consequence of climate change. Braunisch et al. (2014) evaluated the importance of climate, landscape and vegetation variables on the occurrence of indicator species (i.e. Western Capercaille, Hazel Grouse Tetrao urogallus, Three-toed Woodpecker Picoides tridactylus and Eurasian Pygmy Owl) in central European mountain forests and assessed future changes in habitat suitability of these species according to climate projections. Although climate variables were the most
important factors for most species, the models predicted that in situ management actions could partially mitigate the detrimental impact of climate events and sustain bird populations. These included increasing the number of forest gaps (for Western Capercaillie), increasing bilberry Vaccinium spp. cover (for Hazel Grouse) and increasing the number of snags and/or the proportion of high (> 15 m) canopy forest (for Three-toed Woodpecker). However, such interventions may have to work against the natural forest dynamics and could be expensive.

Historically, agricultural expansion and changes in livestock management have had major impacts on mountain birds (Lundmark 2007, Elmhagen et al. 2015). In many mountain areas, traditional grazing practices are characterized by low stocking densities or transhumant pastoralism, the seasonal movement of livestock between high-elevation summer pastures and lowland winter pastures (Arnold & Greenfield 2006). These traditional grazing practices have been largely abandoned in some areas due to social and economic factors, especially in the European Alps. For example, in Italy, the number of farms has decreased dramatically and many have changed to indoor production systems (Battaglini et al. 2014), which has led to substantial changes in mountain vegetation zones through encroachment of formerly open grasslands by trees and shrubs and a loss of structural heterogeneity (Braunisch et al. 2016). Elevation shifts in vegetation may therefore be due to both climate change and land abandonment (Gehrig-Fasel et al. 2007).

The reintroduction of grazing is an often recommended management solution to counteract tree and shrub encroachment in open areas (Gehrig-Fasel et al. 2007) and it has the potential to increase plant structural diversity and composition (Hoiss et al. 2013, Peringer et al. 2013), which is key to preserving emblematic birds of semi-open habitat (Patthey et al. 2012). However, the effects of grazing on mountain bird populations are still not well understood. Long-term grazing at high stocking densities is known to have negative impacts on soil fertility and consequently on the productivity of the whole system (McVean & Lockie 1969), although effects on mountain birds are not consistent and vary substantially among geographical regions, livestock types and stocking levels. Several studies have reported that grazing increases richness or densities of mountain grassland birds (Laiolo et al. 2004, Evans et al. 2006, Bazzi et al. 2015). Evans et al. (2006) found that mixed sheep and cattle grazing, at low intensity, improved the breeding abundance of Meadow Pipit Anthus pratensis compared with sites stocked with sheep only (at high or low density) or unstocked sites in the Scottish uplands, and Loe et al. (2007) reported the highest bird density on pastures with high sheep density in Norway. Other studies have shown no differences in bird abundance or species richness between grazed and ungrazed sites (Moser & Witmer 2000) or a negative influence of grazing animals on nesting success (Pavel 2004, Warren et al. 2008).

Climate change can also have direct impacts on grazing management, although this is less well studied. In Nepal, where transhumance is a common practice, herders perceived the impact of climate change through personal experience. In several studies where herders have been interviewed, they described a rise in temperature, a decline of rain- and snowfall, a scarcity of water resources (Aryal et al. 2014, Wu et al. 2015) and the presence of invasive weeds, which are replacing the valuable grasses on farmlands (Gente & Thwaites 2016). These perceptions accorded with temperature and rainfall trends in the same region. As a result, herders sought to adjust their transhumance patterns to the changed conditions by altering the timing of seasonal livestock movements. The consequences of such management responses for mountain bird populations, however, remain unknown. Given the varied different effects of grazing on mountain birds and the lack of research on likely responses of grazing management practices to future climate change, further investigations are needed to examine potential effects of grazing regimes on mountain bird populations before we can apply them as potential conservation tools.

Leisure and other potential threats

Mountains are important ecosystems for biodiversity but are also multi-functional sites for various human activities, including leisure. People seek mountain landscapes to practise a range of different sports and hobbies such as skiing, snowboarding, hiking, biking, birdwatching, rock-climbing, paragliding and hunting. Local communities benefit economically from tourism. The leisure industry in mountain areas is growing (Debarbieux et al. 2014) and the potential effects of these activities...
on avian communities have received increasing attention from conservationists (e.g. Patthey et al. 2008, Arlettaz et al. 2013, DeLuca & King 2014). The impact of snowsports on biodiversity is a major topic studied in the European Alps, where there are c. 40 000 km of ski-runs served by c. 14 000 ski-lifts capable of transporting c. 1.5 million skiers per hour (Weed & Bull 2004). As a consequence of this and other activities, the Alps receive nearly 100 million visitors per year, spending $60 billion annually (Giuliano 1994). In contrast, snowsport activities, including skiing operations in North America and the Eastern Holarctic, remain at a relatively low density, probably with only local effects on biodiversity (Martin 2001b).

There are several lines of evidence showing that ski-pistes have deleterious effects on both grassland and forest birds via loss and degradation of habitat and a decrease in food availability (Laiolo & Rolando 2005, Rolando et al. 2007, Caprio et al. 2011, Rixen & Rolando 2013). In addition, there is evidence that hormonal stress in birds generated by intensive human activities can negatively impact already vulnerable populations of Western Capercaillie (Thiel et al. 2011) and Black Grouse (Arlettaz et al. 2007, 2013). Anthropogenic disturbance also entails extra energetic costs that may negatively affect population dynamics (Arlettaz et al. 2015). Effects may also operate through infrastructure associated with skiing, for example increased mortality due to collision with ski cables (Baines & Andrew 2003, Watson & Moss 2004), and reduced reproductive success of ground-nesting birds associated with development of tourist resorts (Watson & Moss 2004, Patthey et al. 2008, Tolvanen & Kangas 2016), although negative effects are not universal (Rimmer et al. 2004).

Interactive effects of climate change and outdoor sports could increase the above negative impacts on bird populations in the future. Global warming is having important economic consequences for the skiing industry due to reduced snow cover and persistence. Compensatory mechanisms are targeted at prolonging the ski season by direct spraying of artificial snow or by creating new ski-pistes at higher elevations where snow conditions are more reliable. Brambilla et al. (2016) modelled ski-pistes and mountain bird presence according to future climate scenarios. Strong overlaps between areas climatically and topographically suitable for the development of ski-pistes and areas suitable for breeding alpine birds were predicted to occur, suggesting that the conservation of mountain bird communities will require careful planning to reduce potential increased future conflicts between outdoor winter sports and birds. Global warming is also causing the abandonment of ski-runs at lower elevations. Natural grassland re-vegetation at some abandoned sites resulted in a partial recovery of important alpine birds, although never back to the state of the ‘original’ alpine grasslands (Caprio et al. 2016).

Novel interspecific interactions

Species may respond to climate change by shifting their distribution to track local climates (Tingley et al. 2009, Jackson et al. 2015), which may result in novel interactions as species colonize new areas. Including such interactions has improved model predictions at different scales (Araújo & Luoto 2007). Heikkinen et al. (2007) and Brambilla et al. (2013) suggested that including the presence of woodpeckers that produce the cavities used by secondary cavity-nesting raptors improved model performance in predicting cavity-nesting forest owl distributions. We found only one relevant example that tested the importance of biotic interactions among birds along elevation gradients. Freeman and Montgomery (2015) assessed potential competition between Swainson’s Thrush *Catharus ustulatus*, which generally inhabits lower elevations but which has shifted its distributions towards higher elevations, and the conspecific Bicknell’s Thrush *Catharus bicknelli*, which is largely confined to mountain tops. Using playback techniques, the authors found that, where the species co-occurred, Swainson’s Thrush responded aggressively to Bicknell’s Thrush, but not vice versa.

Conservation and policy

Our literature review has clearly highlighted the need for more detailed studies of mountain birds, with several papers stating that a valuable conservation framework can be achieved only if such knowledge gaps are bridged (see Research gaps and conclusion; Fig. 4). Despite this, we found that most studies on this topic identified adaptation strategies for mountain and upland species threatened by climate change. Most of these studies (n = 21; Fig. 4) focused on the quality, quantity and geographical location of protected areas. Existing protected areas may have already
functioned as important compensatory systems, increasing species’ resilience to climate change (Virkkala et al. 2014, Gaüzère et al. 2016, Santangeli et al. 2016) and in future scenarios of greenhouse gas emission, greater biodiversity losses have been predicted in unprotected than in protected areas (Virkkala et al. 2013). In Europe, nationally designed protected areas are likely to retain climate suitability better than unprotected areas in the future, as they tend to occur at high elevations and hence act as climatic refuges for species, although this was not found to be the case for the European Union-wide Natura 2000 network (Araújo et al. 2011). The same authors also predicted that 97.2% of alpine species and sub-species of vertebrates and plants of European concern will lose suitable habitat due to their small ranges, although that study did not consider species dispersal.

Some habitats may also be more prone to climate change than others. Montane forest species are predicted to be less impacted by climate change due to the stronger self-regulation of the forest microclimate compared with open habitats (Reif & Flousek 2012) and to native forest expansion that has already occurred and which is predicted to continue in many areas (European Alps; British uplands; Chamberlain et al. 2013, Scridel et al. 2017b). However, they could be prone to other climate change-related threats such as pests, disease and wild fires (Dale et al. 2001, Sturrock et al. 2011, Lesk et al. 2017). Furthermore, natural grasslands in the Alpine region may face serious challenges to elevation shift because they are being progressively colonized by trees at lower elevations following land abandonment or release of grazing pressure, while facing constraints at higher elevations, for example due to slow rates of soil formation (Freppaz et al. 2010, Chamberlain et al. 2013, Jackson et al. 2015).

Targeted habitat management should be considered as an adaptive conservation tool for various species threatened by climate change (Fig. 4). Improving habitat structure and offering greater prey availability has been reported to increase mountain species’ resilience and resistance for forest, semi-open and open-habitat species (Carroll et al. 2011, Braunisch et al. 2014, Scridel et al. 2017b). This might be achieved by targeted grazing to maintain open habitats and enhance invertebrate populations (Signorell et al. 2010, Patthey et al. 2012, Braunisch et al. 2016). Such intensive actions can be very costly and in conflict with many economic goals, so management should projected over large areas to support viable wildlife populations. Increasing the quantity and quality of protected areas is important not just for mountain species per se but also because these areas are likely to become stopover refuges for many migrant species tracking climate change (Loarie et al. 2009, Boyle & Martin 2015) and management action should also accommodate these species’ requirements. When intensive management in situ does not compensate for climate effects, then captive programmes (n = 2; Fig. 4), translocation of species to new suitable areas (n = 2; }

© 2018 British Ornithologists’ Union

These adaptation responses for mountain species threatened by climate change can work only if scientists and policy-makers collaborate to influence current legislation. Our classification of high-elevation mountain specialists and mountain generalists indicates initial steps for a joint common Holarctic mountain bird index, which so far has only been developed for some regions in the world (Fennoscandia; Lehikoinen et al. 2014, North America and British Columbia, Canada; Boyle & Martin 2015). Such an index could be an essential element for scientists and policy-makers to measure progress in the conservation of mountain birds, especially if this index includes full life cycle avian use of mountain habitats. While in the long-term global measures to contain and reverse anthropogenic emissions are important (n = 3; Fig. 4), most authors admit that the persistence of mountain species also depends on immediate short-term national and local conservation actions and legislation (n = 9; Fig. 4).

DISCUSSION

Our literature review has shown that there is a growing body of evidence that climate change is affecting the reproduction, survival population trends and distribution of mountain birds. These changes may have been mediated by direct effects of climate on physiology, indirect effects of changes in habitat or via interactions with other biotic and abiotic changes. However, patterns are often highly variable (e.g. both increases and decreases in population size, range changes towards both higher and lower elevations) between species and between different study areas for the same species.

Defining a ‘mountain bird’ across a large region such as the Holarctic is difficult because many species that are mountain birds in warmer climates are lowland species in colder climates. Our goal was to derive an objective definition that could be applied over a large geographical area and which identified species associated with mountains *per se*, rather than occurring in mountains due to interactive effects of climate, elevation, latitude and land use. This is important when considering species distributions over large scales and in particular when projecting future distributions. For example, the Water Pipit was identified as a generalist mountain breeding bird across various mountain slopes, even in the northern, colder parts of its geographical range. Predictions based on climate alone may therefore be inaccurate for such species (e.g. Huntley et al. 2008). In general, the species identified as high-elevation specialists or mountain birds (Table S4) accorded with the authors’ expectations, although there were some surprising results. For example, Rock Ptarmigan is considered an archetypal mountain bird in many parts of its range (the European Alps, the Pyrenees, British Columbia and Alberta) but not according to our definition. This may have been partly due to the coarse scale of the defined breeding range but also reflects the widespread populations of this species inhabiting lowland Arctic tundra. Because conservation policy is typically applied at national or regional level, a regional definition of mountain birds would also be useful, and could be achieved readily using our methods. Although this first classification of Holarctic high-elevation mountain specialist and generalist birds was not the primary aim of this review, we consider this exercise of considerable value for future work on this group of poorly studied species (e.g. baseline monitoring, development of a joint mountain bird index, and ecological and conservation research).

According to our meta-analysis, there was no evidence for consistent elevation shifts in mountain bird species. Although we failed to detect any direct and conclusive evidence that climate change has caused widespread distribution shifts in Holarctic mountain birds, it is likely that we lack sufficient data to generate robust conclusions. The meta-analysis included a range of species encompassing a great variation in life history strategies, demographic parameters and geographical regions. All of these factors are likely to influence potential responses to climate change and hence cause a wide variation in patterns of elevation shift among mountain birds across the mountain ecosystems and avian taxa considered (Martin & Wiebe 2004, Wilson & Martin 2010, Tingley et al. 2012, Novoa et al. 2016).

The consistency in climate projections across studies was somewhat at odds with the heterogeneity of responses of observed elevation shifts. This may in part have been due to more mountain high-elevation specialists being included in the projection papers. However, in many cases, there
was a focus on climate (usually temperature and precipitation) as a driving factor and only half of the studies considered alternative scenarios of climate change in tandem with land use change or other anthropogenic pressures. In general, species distribution models only rarely include scenarios of changes in land use and human disturbance alongside those of climate change (Sirami et al. 2017). It is clear that many factors influence range shifts in mountain birds, including temperature, but also precipitation, habitat and topography, and that species may vary widely in their response. Assessments of elevation range shifts and predictions of future shifts in mountain birds should consider all these factors.

Adaptation responses for mountain species threatened by climate change rely on enhancing the quality and quantity of suitable habitat, in particular via protected areas, but also the conservation of suitable ecological conditions at regional and wider levels, including improving landscape connectivity. We have shown that human activities can be beneficial for climate-sensitive species (i.e. some pastoral activities) and yet mechanization, leisure and urbanization may impede potential benefits. Major changes can occur if scientists and legislators work closely together, for example through the development of efficient agri-environmental schemes, forestry practices, regulation of leisure activities and sustainable urban planning in mountain areas, with explicit recognition of the general ecological requisites for wildlife persistence such as connectivity across their full life cycle.

Research gaps and conclusions

From our literature review, it was evident that mountain species are little-studied relative to species in lowland habitats of the Holarctic such as farmland, forest and wetlands. For many common species in mountains even basic biological and ecological knowledge is lacking (e.g. Alpine Accentor, White-winged Snowfinch, Twite, Wallcreeper, North American Rosy Finches Leucosticte spp.). Although both high-elevation mountain specialists and mountain generalists are well represented in the literature in terms of large-scale distribution studies (e.g. species distribution models based on atlas data), they are very poorly represented when considering finer-scale, usually more intensive studies which address ecological mechanisms. In particular, there were very few studies of the ecology of high-elevation mountain specialists, yet these are the species that are most likely to be affected by climate change. Aside from broad-scale species distribution, the evidence base therefore largely concerns species that occur across a range of habitats and elevations, rather than species whose geographical range, at least in the Holarctic, is largely restricted to mountain areas.

Our understanding of physiological mechanisms underpinning responses to climate change is still limited, despite recent studies emphasizing the importance of specifying ecological traits, notably physiological tolerance, when predicting responses to climate change (Kearney & Porter 2009, Reif & Flousek 2012, Auer & King 2014, Pacifici et al. 2017). This is particularly important in terms of developing conservation strategies. If a species responds directly to climate through a physiological effect, then there might be limited conservation actions that could implemented beyond the need to reduce our dependence on non-renewable fossil energy sources. There is more potential for developing conservation actions for species that are affected indirectly by climate change, although for mountain birds, we still lack information about species’ basic ecological requirements, such as key trophic resources for reproduction, that are required to develop management strategies. We therefore emphasize the need for more basic studies of both physiological tolerance and ecological requirements of mountain birds, and in particular high-elevation mountain specialists, as well as for all those lower-elevation species that are predicted to colonize mountain regions in the near future (Loarie et al. 2009).

The importance of considering cross-ecosystem linkages such as trophic structure when identifying climate change effects has been shown to be crucial for a clear understanding of the underlying mechanisms affecting species and populations (Pearce-Higgins et al. 2010, Santisteban et al. 2012, Fletcher et al. 2013). Furthermore, a better understanding of energetic values in food sources (prey) and how these influence demographics in species is particularly important for future climate-related adaptation responses. Relatively few studies had considered long-term trends over several years that could encompass a full range of climate variation and hence assess climate trends (rather than year-to-year changes in weather over shorter periods). In particular, the low number of studies assessing elevation shifts suggests that monitoring
in high mountains is inadequate, probably due to a combination of complex terrain and lack of field surveyors available in these sparsely populated areas. Targeted monitoring in mountain areas, with a focus on high-elevation mountain specialists, is therefore essential if we are to improve our assessments of current and future climate effects on bird distributions.

Monitoring reproductive success and survival of mountain birds would be similarly useful. The demographic mechanisms that underpin species distributions and population changes are not well understood for mountain birds. There have been some short-term effects of climate demonstrated in several species, but longer-term studies are rare. More intensive, long-term studies would enhance understanding of the key factors that determine population trends and distributions and would therefore facilitate the predictions of future climate change impacts by elucidating more complex mechanisms, such as phenological effects. Many studies acknowledge that a valuable understanding of climate impacts can only be achieved if key interacting factors are considered, such as land use changes and biotic interactions, including interspecific competition. Given that projections of distributions of future mountain bird species may be quite sensitive to assumptions about how land use will change in the future (e.g. Chamberlain et al. 2013), we urge a greater consideration of land use change in species distribution modelling in mountain environments. Finally, we invite scientists and policy-makers further to develop studies and related frameworks efficiently to develop habitat restoration plans in mountain areas, particularly where climate change and changes in land use are likely to offer such opportunities in the near future (i.e. encroaching pastures after grazing/abandonment of ski-pistes, afforestation of native woodland on moorlands). Indeed, conservation and restoration frameworks have already been developed for various birds species inhabiting mountain regions considered susceptible to changes in climate and land use (e.g. Signorell et al. 2010, Carroll et al. 2011, Patthey et al. 2012, Braunisch et al. 2016, Caprio et al. 2016, Scridel et al. 2017b).

We are grateful to Jeremy Wilson, Paul Donald, James Pearce-Higgins, Tómas G. Gunnarsson and one anonymous reviewer for helpful comments and advice. We also acknowledge Alessandro Franzoi, Giacomo Assandri, Simone Tenan, Emanuel Rocchia & Frank La Sorte for general advice and comments. We thank Bill DeLuca, Franz Korner, Jeremy Migel, Claire Pernollet, Veronika Braunisch, Jaime Resano Mayor and Morgan Tingley for help with the meta-analyses. The study was funded by Museo delle Scienze of Trento (MUSE – Italy) and by the Paneveggio-Pale di San Martino Natural Park (Italy) as part of Davide Scridel’s doctorate programme. Matteo Anderle’s contribution was funded by the Autonomous Province of Trento (Italy).

REFERENCES

Freppaz, M., Filippa, G., Caimi, A., Buffa, G. & Zanini, E. 2010. Soil and plant characteristics in the alpine tundra (NW...
Climate change and mountain birds

Giuliano, W. 1994. The impact of hiking and rock climbing in mountain areas mitigate the impacts of climate change on bird

Tingley, M.W., Monahan, W.B., Beissinger, S.R. & Moritz, C. 2009. Birds track their Grinnellian niche through a
Climate change and mountain birds

Received 18 April 2017; revision accepted 3 February 2018. Associate Editor: James Pearce-Higgins.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Further details on methods used to produce the mountain bird list.

Appendix S2. Further details on the meta-analyses methods.

Table S1. List of relevant publications resulting from the systematic ISI Web of Knowledge search.

Table S2. Studies included in the meta-analysis of projected changes in geographical distribution or population size in mountain birds under scenarios of future climate change.

Table S3. Parameter estimates (± standard error), lower (LCL) and upper (UCL) 95% confidence limits estimating change in elevation of bird species distributions over time, and the effects of rates of temperature change (°C/year) and duration of study on different subsets of data.

Table S4. Mountain bird list.

© 2018 British Ornithologists’ Union