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Almost all birds use their fight feathers as a means of escaping predators, and their specific design is adapted to their 
individual circumstances. For example, Galliform birds use a fast, explosive, noisy take-off to startle a predator. Their 
legs, wings and feathers must work together to create a strong propulsive force and loud, rhythmic sound. Partridges 
in a group initiate escape simultaneously, even though individuals in the flock differ in size and experience, as well 
as in age and sex resulting in feathers that differ in length and shape. In a long-term study, we measured 13 814 
wild red-legged partridges (Alectoris rufa) to understand how variation in feather proportions and morphometrics 
between the age–sex classes relate to their escape abilities. We devised two new indexes to quantify the aerodynamic 
differences between age–sex classes. Our approach synthesizes the understanding of bird take-flight mechanics, 
feather proportions and the aerodynamic properties of wing tips to show how differences in feather length and tip 
shape characterize age–sex classes. Our findings suggest that the density, stiffness, permeability, size and shape of 
the distal primary feathers and wing tips can explain aerodynamic differences between individuals and the efficiency 
of groups in escape situations.

ADDITIONAL KEYWORDS: distal primary feathers – feather tip – flock coordination – predator escape – take-
off – wing tip.

INTRODUCTION

Group living is a common strategy for surviving to the 
attacks by predators (Møller et al., 2016), and groups 
of prey species typically include individuals of differ-
ent ages and sexes (Aplin et al., 2013). Individuals in a 
group learn to improve their escape abilities through-
out their lives, and their growing experience increases 
the ability of their group to avoid and survive predator 
attacks (Santos et al., 2015; Noguera, Kim & Velando, 
2017). Prey animals must generally forage while 
simultaneously watching out for, and avoiding, pred-
ator attacks (Hudin et al., 2016). As a first strategy, 
birds maintain a secure distance from predators, but 
when predators approach, they take flight and search 
for cover (Møller, Vágási & Pap, 2013).

During high-risk situations, such as a predator 
attack, partridges exhibit a powerful jump using their 
legs and then flap their wings to take flight (Tobalske &  
Dial, 2000). This ability to initiate a quick escape 
allows partridges to successfully foil predator attacks, 
the explosive take-off providing sufficient inertia 
to become airborne as well as generating a burst of 
noise that startles predators (Niese & Tobalske, 2016; 
Tobalske, Jackson & Dial, 2017). To take flight, a par-
tridge must generate enough lift and thrust to lift their 
weight and then thrust them forwards. This explosive 
type of take-flight is known as ‘burst flight’ (Askew & 
Marsh, 2002). During take-off, the stroke amplitude of 
the wings is at a maximum, while in sustained and 
descending flight, the stroke amplitude decreases 
(Hedenström, 2002), the power requirements being 
less for steady flight than for take-off (Earls, 2000).

This specialized form of take flight is facilitated by 
the shape of the wing tip, specifically the shape and *Corresponding author. E-mail: jnadal@ca.udl.cat
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properties of the distal primary feathers (Nudds, 
Kaiser & Dyke, 2011). The wing surface, shape and 
a bird’s weight set the basic aerodynamic constraints 
for flight (Henningsson, Hedenström & Bomphrey, 
2014), so that the relationships between total wing 
length, primary feather length and weight define 
various aspects of flight performance (Muijres et al., 
2012; Klaassen van Oorschot, Tang & Tobalske, 2017). 
Feather structure is also influenced by the flight habit 
of a species. Birds with a strong flapping flight have 
more robustly constructed primary feathers, with a 
relatively greater rachis width and barb density (Pap 
et al., 2015). The distal primaries are more heav-
ily loaded than the innermost ones and have a more 
prominent tip because thrust is largely generated by 
the distal parts of the wings (Butler, 2015). In addi-
tion, the three distal primaries are able to flex inde-
pendently and so achieve greater velocity (Wang et al., 
2012), and their tips differ in their air permeability 
and aerodynamic properties (Muller & Patone, 1998). 
Air passes more easily through the vanes of more per-
meable feathers due to their less barb and barbule 
density, and the less adhesive properties of the ham-
uli (hooks), while feather stiffness is related to more 
dense vanes the width and wall thickness of the rachis 
(Feo et al., 2015).

The red-legged partridge (Alectoris rufa) (hereaf-
ter, partridge) is a key prey species in Mediterranean 
ecosystems (Potts, 2012). Males and females differ in 
body size and form, and individual size is also related 
to age and hierarchical rank. Thus, age–sex class, body 
condition and rank are interrelated and define an indi-
vidual’s role within and between social groups (Alkon, 
2015). As birds age, their locomotor capacity and aero-
dynamic performance increase. Flight feather mor-
phology also changes in the ontogenic transition from 
young to fully mature individuals (Heers, Tobalske &  
Dial, 2011). We can expect scaled body parameters 
and balanced aerodynamic performance among age–
sex classes because successful escape from predators 
requires equivalent flight capacity in both juveniles 
and adults of both sexes. Juveniles and females have 
less mass, while adults and males are larger, requir-
ing the need to compensate for increased weight with 
greater muscular power and larger wing surfaces to 
achieve a similar flight speed (Tobalske et al., 2017). 
We can expect that juveniles and females, being 
smaller, may be better fliers. However, there is prac-
tically no data on how the sizes of the various wing 
parameters change with age–sex class in partridges.

The tip form, slot shape and dihedral angle of the 
distal primaries have aerodynamic consequences and 
exert a remarkable influence on flight performance 
(KleinHeerenbrink, Johansson & Hedenström, 2017) 
Birds with pointed wing shapes fly more rapidly, and 

those with blunt wing shapes show greater manoeu-
vrability (Norberg, 1979; Saino et al., 2017). Flight 
velocity and manoeuvrability also depend on the 
power of flapping and the aerodynamic characteristics 
of the body. We can, therefore, expect relatively pointed 
wing tips in young partridges and relatively rounded 
wing tips in older partridges, larger primary feathers 
in males than in females, since velocity and manoeu-
vrability of an individual are influenced by its age- and 
sex-related size and weight (Fernández et al., 2007; De 
la Hera, Pulido & Visser, 2014).

In this study, we examined how the proportion and 
morphometric variation between partridge age–sex 
classes can influence their escape abilities. We used 
biometric data obtained during a long-term study of 
a wild partridge population in southern Spain. Our 
objectives were to (1) examine whether different par-
tridge classes have distinct feather length and tip 
shape and (2) evaluate wing-tip shape and surface–
weight ratio (two indices indicating the aerodynamic 
capacities of different age–sex classes).

MATERIAL AND METHODS

Study area and data collection

We examined hunted wild partridges from ‘Las 
Ensanchas’, a hunting estate in the Jabalón River 
basin in Ciudad Real, Spain (38°39′N, 3°13′W, 790–840 
m a.s.l.). The habitat type is Mediterranean dehesa, 
composed of open woodland (Quercus ilex) with an 
understory of shrubland (25%) interspersed with pas-
tures and cultivated land (75%). We studied recently 
shot birds between 1998 and 2011 as a representative 
sample of the whole population. Age was determined by 
examining the primary feathers (colour and wear) and 
sex by spur characteristics (Nadal, Ponz & Margalida, 
2016). We measured weight in the field using a digital 
weight scale with a 1-g precision and body length from 
beak tip to tail with the body flattened to a ruler. One 
wing was taken from each bird (cut through the ulna-
radius) and prepared for laboratory measurements. 
The wings were combed and washed if necessary and 
then dried for 15 days in an oven at 40 °C.

We recorded wing length (from wrist to wing tip 
with the wing folded, and placed flat on a ruler), 
eighth, ninth and tenth primary feather lengths (from 
tip to integument insertion, with feather flattened on 
a ruler), all to the nearest 0.5 mm. The measurements 
were repeated to confirm the value obtained. One 
of us (J.N.) performed all of the field measurements 
and the other researcher (C.P.) performed all of the 
laboratory measurements. Across 14 years, we exam-
ined 13 814 wild partridges, 77% collected in October, 
20% in November and 3% in December. Not all of the 
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partridges examined were useful for all parameters 
(i.e. some birds were mutilated, lacked certain body 
parts or had broken or moulting feathers). These indi-
viduals were eliminated from the analysis of the vari-
able affected.

Wing-tip Shape and Surface–Weight indexeS

The wing-tip shape was analysed using feather 
parameters A and B: A = the ninth primary length 
minus tenth primary length and B = the eighth pri-
mary length minus the ninth primary length. Wing-
tip shape was quantified using the sizes of the two 
parameters A and B. When the parameters A and B 
are similar, the wing tip is pointed; when B is less 
than A, the wing tip is blunt (Fig. 1). We performed a 
regression between A and B for each age–sex class and 
used the A/B ratio as an index of wing-tip shape (Lees, 
Dimitriadis & Nudds, 2016). We used an index of mass 
relative to size of juvenile females; the average mass 
of each class divided by the average of juvenile female 
mass. We used an index of experience relative to juve-
nile females; the age in months of each class divided by 
the age in months of the juvenile female, because life 
expectancy is lower in this age–sex class. Accordingly, 
this index could be considered as a surrogate of the 
accumulated experience.

To assess the flight characteristics of each partridge 
age–sex class, we performed a regression analysis 
between weight (as an index of load) and total length 
by wing length (as a surface index that is proportional 
to half of the bird surface). Hence, the ratio of total 

length by wing length to weight provides an index of 
aerodynamic value and indicates the flight properties 
of each age–sex class (Hedenström, 2002).

StatiStical analySeS

One-way analysis of variance was used to test pri-
mary feather length differences between all age–sex 
classes. We performed isometric functions with sim-
ple regression models to explain the weight or wing 
length with respect to eighth, ninth and tenth primary 
lengths and with respect to surface index (total length 
by wing length). We performed allometric functions 
with logarithmic transformation of data (Supporting 
Information, Tables S1–S3). We used corrected Akaike 
information criterion (AICc) to select between isomet-
ric (maintains the proportion) or allometric (changes 
the proportion) functions (Burnham & Anderson, 
2002), and we used power equations to disclose allo-
metric relationships between weight and primary 
length and between wing and primary length. In the 
dataset, we performed simple and multiple regression 
models including age–sex class as factor. We performed 
analysis of covariance to assess differences between 
age–sex classes (SAS, 2015).

RESULTS

A total of 9938 partridges (72% of those collected) 
were used for weight measurements: 7529 (54%) for 
total length, 11 539 (83.5%) for wing length and 11 844 

Figure 1. Wing tip, formed by the apices of the eighth, ninth and tenth primaries. A = ninth minus tenth primary length; 
B = eighth minus ninth primary length. In young partridges, a pointed wing shape is indicated, and in old partridges, a 
blunt wing shape is indicated.
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(85.7%) for tenth primary length, 13 011 (94.2%) for 
ninth primary length and 10 696 (61.4%) for eighth 
primary length. All variables showed significant differ-
ences between age–sex classes (Fig. 2 and Table 1). All of 
the feather lengths were scaled between age–sex classes 
in the following order: juvenile female < adult female < 
juvenile male < adult male. Between pairs of variables, 
the allometric functions had lower AICc than isometric 
functions. We found power equations between weight 
and the tenth primary length y = 0.04X2.01, and the 
ninth primary length y = 0.08X1.85, and the eighth pri-
mary length y = 0.02X2.09, and between wing length and 
the tenth primary length y = 6.4X0.7, and the ninth pri-
mary length y = 7.7X0.65, and the eighth primary length 
y = 4.2X0.77 (Supporting Information, Tables S1–S3).

Considering all individuals, A and B were nega-
tively correlated (R2 = 0.25, P < 0.001, N = 8204). The 
regression of A explained by B of adult males had a 

Table 1. Differences in primary length between age–sex 
classes (juvenile female, adult female, juvenile male and 
adult male) of the red-legged partridge by analysis of 
variance 

N F P

Tenth primary length 11 844 7725.5 < 0.0001
Ninth primary length 13 011 11 651.8 < 0.0001
Eighth primary length 10 696 7668.6 < 0.0001

Figure 2. Scaled body differences among feathers (a = tenth primary, b = ninth primary, c = eighth primary) measured 
in millimetres between age–sex classes (juvenile female, adult female, juvenile male and adult male) in the red-legged 
partridge.
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similar slope (b = −0.30 ± 0.02) compared with adult 
females (b = −0.32 ± 0.04), as did juvenile males 
(b = −0.17 ± 0.02) compared with juvenile females 
(b = −0.22 ± 0.02). This indicates that the wing tip is 
rounded in old birds and pointed in young birds (Figs 
1, 3 and Table 2) and that the A/B ratio separates 
younger birds from older birds (Table 3).

Overall, considering age–sex class as factor, weight 
was positively related to total length × wing length, fol-
lowed a linear model (R2 = 0.77, P < 0.001, N = 6337). 
The regressions for the age–sex classes were as fol-
lows: juvenile females (R2 = 0.19, P < 0.001, N = 1547), 
juvenile males (R2 = 0.26, P < 0.001, N = 1318), adult 
females (R2 = 0.16, P < 0.001, N = 1594) and adult 
males (R2 = 0.19, P < 0.001, N = 1878). The global 
model showed significant interactions (slopes dif-
ferences) among the age–sex classes. Regressions of 
adult males had a similar slope (b = 0.0060 ± 0.0003) 
to juvenile males (b = 0.0068 ± 0.0003), adult 
females (b = 0.0052 ± 0.0003), to juvenile females 
(b = 0.0056 ± 0.0003). Females had a greater (total 
length × wing length)/weight ratio than males (Fig. 4 
and Table 3).

DISCUSSION

Our results show that the size of the outermost pri-
maries is scaled among partridge age–sex classes 
(Martin, 2015). The various age–sex classes show 
scaled proportions in accordance with their differing 
flight abilities, social roles and positions in the social 
hierarchy (Jackson, Segre & Dial, 2009; Crates et al., 
2016). Scaled primary proportions between age–sex 

classes is, therefore, a consequence of maturation 
and sexual size dimorphism (Heers et al., 2016). 
Maturation in partridges involves fattening, an 
increase in the thickness of the integument, increas-
ing ossification and stronger feathers (Homberger & 
de Silva, 2003; Piersma & Drent, 2003). Our findings 
suggest that interpretations of size, form and func-
tional attributes must take scaling effects among 
age–sex classes into account (McFarlane, Altringham 
& Askew, 2016).

Use of the legs and wings enables birds to take flight 
to avoid predators (Tobalske & Dial, 2007). Because 
juvenile females have lighter pectoral muscles for flap-
ping, they depend more on their surface–weight pro-
portions and wing-tip shape to achieve a similar flight 
speed to adult males (Jackson, Tobalske & Dial, 2011). 
Hens and juvenile birds weigh less and therefore do 
not need the same pectoral power as adult males to 
achieve a similar speed flight (Tobalske, Hedrick & 
Biewener, 2003). A higher mortality rate would be 
expected for a certain age–sex class, compared to oth-
ers, if it could not fly as efficiently. By living in groups, 
partridges take advantage of flock experience and abil-
ity to escape from predators. Thus, the anti-predator 
behaviour of flock must compensate for some of these 
individual differences in flight capacity (Macleod et al., 
2005; Rogers, 2015).

All age–sex classes showed a negative regression 
between A and B parameters probably because these 
two indexes are complementary. The regression lines 
for A–B in adults showed a more pronounced slope 
than in juveniles (Fig. 3), implying a more rounded 
wing tip (Wang & Clarke, 2015). With maturation, 
wing-tip shape changes from a more pointed form 

Figure 3. Wing-tip shape index and the regression between A and B segments in each age–sex class.
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in juveniles (for increased flight velocity) to a more 
blunt form in adults (for better flight manoeuvrabil-
ity) (Heers & Dial, 2015). There is a clear relationship 
between feather morphology and aerodynamic perfor-
mance, with older birds having stiffer distal primaries, 
a higher number of barbicels and a higher degree of 
overlap between barbules (Heers, 2016). These charac-
teristics generate greater lift/drag ratios than in juve-
nile wings, which have flexible rachis and less cohesive 
barbules (Schmitz et al., 2015). Wing tips show differ-
ent slot patterns and feather apical form in the differ-
ent age classes, causing changes in drag, lift, stiffness, 

flapping power and flight capacity (Hahn et al., 2016). 
Aerodynamic forces put more pressure on the distal 
feathers in flapping flyers, and selection pressures 
drive flight feather form towards the most functional 
morphology. In young birds, the ninth and tenth distal 
primary feathers are light, flexible and pointed, while 
in adults, they are rounder, stiffer and have denser 
vanes (Dawson, 2005).

Efficacy (i.e. successful escapes) is more important 
than efficiency (i.e. aerodynamic performance) in 
escaping predators. Therefore, various mechanical, 
physiological and behavioural mechanisms combine 

Table 2. Shape and properties of the eighth, ninth and tenth primary feather apices in partridge age–sex classes

Apex consistency Apex shape Raquis stiffness Shape of wing tip

Juvenile female Permeable Pointed Flexible Pointed
Juvenile male Permeable Pointed Flexible Pointed
Adult female Impermeable Rounded Stiff Rounded
Adult male Impermeable Rounded Stiff Rounded

Figure 4. Aerodynamic index and the regression between weight and total length × wing length in each age–sex class.

Table 3. Indexes of wing, surface–weight, muscle development and experience in partridge age–sex classes

Wing-tip shape index Surface–weight index Index of mass with 
regard to the juve-
nile female

Index of experience with 
regard to the juvenile 
femaleA/B (total length × wing 

length)/weight

Juvenile female 1.43 130.8 1 1
Juvenile male 1.29 122.9 1.19 1
Adult female 2.87 130.5 1.04 > 4
Adult male 2.74 121.2 1.25 > 4
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to equalize the different age–sex classes in terms of 
escape efficacy (Moore & Biewener, 2015). The sur-
face–weight index might be useful in understanding 
the flight capacity differences among bird classes. For 
example, males are heavier and have worst aerody-
namic indexes and can compensate for this with larger 
pectoral muscles, longer wings and stiffer distal feath-
ers (Usherwood, 2016).

In this study, we highlight the attributes of feathers, 
which improve predator escape efficiency in partridges. 
Flock success also depends on a coordinated response; 
simultaneous take-off, flight and landing combine to 
give significant advantages against predator attacks. 
Social status, individual maturity and sex influence 
the cohesive activities of a group of partridges, and 
thus their survival prospects.
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