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In migrant animals, conditions encountered at various times and places through-
out their annual cycle may affect breeding success. Yet, most studies so far have only 
investigated the effect of specific parts of the annual cycle, despite the importance to 
understand how different stages can interact and how these stages compare to intrinsic 
quality to properly modulate breeding success. Using a structural equation model-
ling approach, we investigated drivers of breeding success (migration cycle, individual 
quality, breeding conditions) in hoopoes Upupa epops, a long-distant migrant. Our 
causal framework explained 75% of the variation in breeding success. The effect of 
the migration schedule was negligible, whereas the previous breeding attempt strongly 
influenced current breeding success. We suggest that the interplay of individual qual-
ity and environmental conditions during both previous and current breeding season 
may be more important drivers of breeding success than migration schedules, even in a 
long-distance migrant. We conclude that structural equation modeling is a promising 
tool to investigate causal relationships. Applied to hoopoes, we demonstrated that cur-
rent breeding success is strongly linked to previous breeding success. Complementary 
analysis integrating weather and climate conditions during migration and the breeding 
season may provide a deeper and wider overview of the annual cycle of hoopoes and 
additional insights into the existence of carry-over effects in breeding success.

Introduction

Events occurring during an individual’s life history can explain their current perfor-
mance and are defined as carry-over effects (COEs) (O’Connor et al. 2014). COEs 
can explain individual differences in fitness traits such as survival and breeding success 
(Festa-Bianchet 1998, Harrison et  al. 2011, Ceriani et  al. 2015). Recently, Senner 
et al. (2015) proposed a unifying framework to understand such individual differences, 
which suggested that condition experienced during early-life would have irreversible 
effects on fitness while conditions encountered during adulthood should have revers-
ible effects. Consequently, such ‘reversible state effects’ can carry-over to affect indi-
vidual fitness during subsequent life-history stages but can also be compensated for, 
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at least partially, i.e. when a period with abundant resources 
allows individuals to mitigate negative effect of a previous 
period (‘compensation hypothesis’, Conklin et  al. 2013, 
Senner et al. 2014, Clausen et al. 2015).

Carry-over effects have been demonstrated in various taxa, 
from mammals to invertebrates (Festa-Bianchet 1998, Har-
rison et al. 2011, Ceriani et al. 2015). They might be particu-
larly prevalent in migratory animals as migratory journeys 
often imply high energetic costs, adverse weather conditions 
during the journey and on the non-breeding site, or decreased 
food availability that may compromise (components of ) fit-
ness (Clausen et al. 2015, Cooper et al. 2015, Rushing et al. 
2016). In principle, COEs may occur between any successive 
stages of the annual cycle but those linking environmental 
conditions in the non-breeding sites and the timing of spring 
migration have most commonly been investigated to explain 
current reproductive success (Marra et al. 1998, 2015, Norris 
2005). However, links between other events or links embrac-
ing full annual cycles have been considered only recently; yet 
we need a holistic approach considering all periods within a 
year to improve our understanding of animal movement and 
life-history evolution (Marra et al. 2015, Saino et al. 2017).

Investigating COEs over full annual cycles poses several 
major challenges. First, year-round data are needed on 
breeding performance, migratory behavior, location of the 
non-breeding site and environmental conditions at all places 
visited, which requires tracking of individuals throughout 
the year (Harrison et al. 2011). Second, it is often difficult 
to disentangle the effect of intrinsic and extrinsic factors 
and processes (Daunt et  al. 2014, Saino et  al. 2017). For 
instance, environmental conditions in the non-breeding sites 
may influence individual (body-)condition prior to spring 
migration (Norris et al. 2004, Sedinger et al. 2006), which, 
in turn, may influence the timing of spring migration, 
arrival in the breeding site and breeding success (Low et al. 
2015). Finally, another critical challenge is to analyze the 
different events and processes jointly within the same frame-
work. A powerful and promising approach that can meet 
these challenges is the use of structural equation models 
(SEMs, Grace et al. 2010) – probabilistic models that evalu-
ate multiple causal pathways and include both direct and 
indirect effects (Grace 2006). SEMs use conceptual (‘latent’) 
variables that are constructed by one or more observed 
variable(s), and thus account for measurement uncertainty 
(Grace 2006).

SEMs appear well-suited for investigating COEs in 
migrants as they can consider the whole migration process 
and quantify relationships between several latent variables 
and breeding success. For instance, previous breeding perfor-
mance can affect current breeding through intrinsic factors 
such as individual quality (McCleery et  al. 2008) or by a 
series of COEs triggered by events on the journeys between 
breeding and non-breeding sites (Shoji et al. 2015). Thus, 
to clearly distinguish between causal pathways and assess 
the relative importance of potential factors, we need to 
consider a direct influence of previous breeding on current 

breeding success (reflecting individual history) as well  
as the influence of events occurring outside the breeding 
periods.

In the present study, we investigated COEs during the 
annual cycle in a long-distance migrant – the hoopoe Upupa 
epops. We reconstructed the annual cycle of more than 50 indi-
viduals between consecutive breeding bouts from geolocator 
data, characterized breeding success, timing of migration 
(both in autumn and spring) and location of non-breeding 
sites. Using SEMs, we quantified the relationships between 
each step of the annual cycle and breeding success, and thus, 
quantified the degree to which breeding success was shaped 
by previous breeding performance, autumn migration, con-
dition at the non-breeding sites, and spring migration.

As a study recently demonstrated dependencies between 
successive stages in the annual cycle of hoopoes (van Wijk 
et  al. 2017), we expected strong relationships between 
each stage throughout the year but, given the ontogenetic 
framework, only weak COEs on breeding success.

Material and methods

Model species

We investigated a population of hoopoes breeding in south-
western Switzerland (46°14′N, 7°22′E), in a study area of 
about 62 km2 (Arlettaz et  al. 2010b) with currently ∼550 
nest boxes. Hoopoes are long-distance Palearctic–African 
migrants, which spend the non-breeding season (hereafter 
referred to as ‘wintering’) in the Sahelian belt south of the 
Sahara (Bächler et  al. 2010). Birds typically return to the 
breeding grounds in early April, start breeding in late April, 
and the last nestlings fledge in early August (van Wijk et al. 
2016). Most hoopoes in our study population produce one 
clutch per year, but one third has two or more clutches (Hoff-
mann et al. 2015).

Data collection

Hoopoes were caught in or at nest boxes and equipped  
with geolocators of type SOI-GDL1 (Bächler et  al. 2010, 
van Wijk et al. 2017). The tracking devices had no effects on 
reproduction, condition and survival in hoopoes (van Wijk 
et al. 2016). From 2008 to 2013, 328 breeding hoopoes were 
equipped with geolocators, of which 54 were retrieved in  
the following year (Supplementary material Appendix 1  
Table A1 for details by year and sex). For these birds, we 
determined timing of migration, location of wintering areas 
and breeding performance (number of clutches and the 
number of fledglings of the first clutch, see Supplementary 
material Appendix 2 for a full description of the dataset).

Characterization of migration
Based on geolocator data, we determined individual migra-
tion schedules and location of wintering areas (Schmaljohann 
et  al. 2016, van Wijk et  al. 2017). Autumn and spring 
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migration schedules were characterized by both start date and 
duration. We used the normalized difference vegetation index 
(NDVI) to characterize conditions in wintering areas as these 
correlate with weather conditions (temperature and rainfall) 
and vegetation openness and thus, most likely, also with food 
availability (Trierweiler et  al. 2013). We retrieved NDVI 
values from US Geological Survey Famine Early Warning 
System network (eMODIS NDVI data < http://earlywarn-
ing.usgs.gov/fews >) and used the median NDVI values over 
the months October to February as a proxy of general con-
ditions and the difference between median NDVI values in 
October and February (ΔNDVI  NDVIFeb – NDVIOct) as 
an index of their variation.

Breeding performance
At the breeding grounds in Switzerland, nest boxes were 
surveyed every two weeks from the beginning until the 
end of the breeding season. Occupied nest boxes were sub-
sequently visited every three days to obtain the number of 
eggs, hatchlings and fledglings, and the timing of incubation, 
hatching and fledging. For each individual, we recorded the 
number of clutches and the number of fledglings, (see Table 1 

and Supplementary material Appendix 2 for a full description 
of the dataset).

Investigating causal hypotheses using structural 
equation model

Causal framework
Structural equation models combine a measurement model 
that defines latent variables from one or more observed 
variables with a structural regression model that links these 
latent variables (Grace 2006). This structural regression model 
can represent causal relations between latent variables.

Following the approach in Grace et al. (2012) we aimed at 
explaining current breeding success in the hoopoe population 
assuming causal links to the following latent variables: previ-
ous breeding success, timing of autumn and spring migration, 
location and conditions of the wintering areas and timing of 
the wintering period (Fig. 1). Current breeding success was 
thus the terminal latent variable in our model.

Our causal framework followed a chronological pathway 
(Fig.1) and hypothesized that dependencies between 
successive activities in the annual cycle. In particular, we 

Table 1. Short description of the measured variables.

Measured variable Description Biological meaning Source latent 
variable

Median (range)
[calendar date]

Departure date (Dep) date (in Julian day) of the 
beginning of the migration 
for the followed individual

early or late departure from geolocator data1 AU 227.5
(203;258)
[22 Jul;15 Sep]

SP 68.5
(46;111)
[15 Feb;21 Apr]

Arrival date (Arr) date (in Julian day) of the end 
of the migration phase for 
the followed individual

early or late arrival from geolocator data1 WiT 266
(236;306)
[24 Aug;2 Nov]

Duration (Dur) arrival date – departure date length of the seasonal 
period

from geolocator data1 AU 35
(5;76)

WiT 169
(132;198)

SP 24
(5;63)

Number of brood (Br) no. of brood per individual 
each breeding season

proxy for breeding 
success

from breeding survey 
in Switzerland

PB 1
(1;3)

BS 2
(1;4)

Number of fledglings (Fl) no. of fledgling in the first 
brood per individual

proxy for breeding 
success

from breeding survey 
in Switzerland

PB 5
(0;8)

BS 5
(0;8)

NDVI median value of stretched 
NDVI values from October 
to February

indicator of vegetation 
cover and prey 
accessibility

USGS FEWS NET 
data portal2

WiC 0.21
(0.08;0.53)3

ΔNDVI difference in stretched NDVI 
values between February 
and October

indicator of seasonal 
change in vegetation 
cover and prey 
accessibility

USGS FEWS NET 
data portal2

WiC –0.14
(–0.40;0.01) 3

1see van Wijk et al. (2017) for detailed information about determination of individual migration schedules and location of wintering areas
2eMODIS NDVI data obtained for West Africa from < https://earlywarning.usgs.gov/fews/product/115 >.
3unstretched values are presented to easy comparison with other studies and were obtained as follows:
unNDVI  (value – 100)/100
unΔNDVI  (value)/100
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assumed that 1) previous breeding success could directly 
affect current breeding success (black arrows in Fig.1),  
2) autumn and spring migration, wintering timing and con-
ditions have direct effects on breeding success, 3) autumn 
migration has an effect on winter timing and conditions, and 
4) these could, in turn, affect spring migration. Thus, the 
model not only tested the direct influences of previous events 
on current breeding success but also their indirect effects, e.g. 
whether previous breeding success influenced current breed-
ing success via changes autumn migration, wintering and 
spring migration (grey arrows in Fig.1).

To construct the measurement model that underlies the 
causal framework, we assumed starting date and duration of 
a given period to be good indicators of a common latent vari-
able. This allowed us to build latent variables for the timing 
of each step of the non-breeding life-cycle: autumn migration 
(AU) from the departure date from the breeding grounds and 
the duration of autumn migration; winter timing (WiT) 
from arrival date on wintering ground and duration of win-
tering; and spring migration (SP) from departure from the 
wintering grounds and the duration of spring migration. We 
used median NDVI and ΔNDVI for the latent variable char-
acterizing resource conditions in the wintering area (WiC). 
Furthermore, we used number of broods and number of 
fledglings in the first brood to define latent variables for both 
previous (PB) and current breeding success (BS) (Fig. 2).

Implementation of our structural equation model
Following the notation from Grace (2006), the measurement 
model is:
xij  li xj 1 dj

yik  li′hk 1 ek

Where xij and yik are measured variables associated to 
independent latent variable j and the dependent latent 

variable k, respectively li and li′ are the loading factors link-
ing the measured variable i to an independent and depen-
dent latent variable, respectively, xj is the independent latent 
variable j, hk the dependent latent variable k, and dj and ek are 
measurement and residual errors, respectively.

Our structural model (Fig. 2) is:
hk  gkj xj 1 zk

With gkj being the structural coefficient describing the effect 
of the independent latent variable xj on the dependent latent 
variable hk and zk the residual variance.

Due to the relatively restricted sample size (54 individ-
ual annual cycles) and the inclusion of both categorical and 
continuous variables in the dataset, we estimated the param-
eters of the measurement and structural model using Markov 
chain Monte Carlo (MCMC) simulations within a Bayesian 
framework, which is a robust method even with low sam-
ple sizes (Grace et  al. 2012). For all parameters to be esti-
mated, we specified non-informative prior distributions (see 
Supplementary material Appendix 3: R script for a complete 
specification of the model and priors used). The model was 
implemented in WinBUGS (Lunn et al. 2000) called from R 
(< www.r-project.org >) with package R2WinBUGS (Sturtz 
et al. 2005).

Since we wanted to compare their relative influence, 
we standardized independent variables and estimated coef-
ficients, i.e. we quantified the change in a dependent vari-
able relative to changes in the independent latent variable(s). 
The total effect on a latent variable is the sum of both direct 
and indirect effects (black and grey arrows in Fig. 1– indirect 
effect is derived as the product of all coefficients through the 
pathway). The total explained variance of breeding success 
R² can be derived easily from the unexplained variance of 
breeding success (z) as R²  1 – z (Grace 2006). A Bayesian 
p-value was computed to assess the fit between model and 
data, where values close to 0 or 1 are suspicious (Kéry and 
Schaub 2012).

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.3j8rr > (Souchay et al. 2017).

Results

Our data fitted the SEM expectations generally well (Bayesian 
p-value  0.49) and explained around 75% of the variance in 
current breeding success (1 – z, Fig. 3).

The model coefficients indicate that previous breeding 
had a direct and positive influence on current breeding suc-
cess (g1.1  0.62, p(g1.1  0)  0.97, Table 2) but its indirect 
effect through the migration and non-breeding period was 
negligible. Autumn migration had a slightly positive effect 
on winter timing (g3  1.49) but only a weak effect on winter 
conditions encountered (g4  0.52). Winter timing and con-
ditions had nearly no effect on spring migration (–0.19 and 

Figure 1. Conceptual diagram of how variables were linked to each 
other in our model. Directional arrows refer to the direction of the 
causal relationship. Grey and black arrows represent indirect and 
direct effects of variables on breeding success.
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0.14, respectively). Finally, autumn migration, winter timing 
and conditions, and spring migration had nearly no influ-
ence on breeding success (–0.01, –0.03, –0.02 and 0.02, 
respectively).

Discussion

Using a structural equation model, we tested the hypothe-
sis that previous breeding success, migration bouts and the 
non-breeding period influenced current breeding success in a 
long-distance migrant bird. Surprisingly, none of the migra-
tion stages influenced current breeding success suggesting 
that carry-over effects were virtually absent and that the influ-
ence of adverse environmental factors en route or in the non-
breeding areas could be buffered or equalized. However, we 

found a direct and positive relationship between previous and 
current breeding success, which could be explained by strong 
intrinsic effects in determining breeding success.

No relationship between successive stages

As the annual cycle of migratory birds is thought to be  
time-constrained, we expected strong relationships both 
between consecutive steps/periods (Newton 2008) – especially 
between spring migration timing and breeding success, what 
has been found in many earlier studies (Bêty et  al. 2004, 
Catry et al. 2013, Low et al. 2015). No relationship between 
stages of the migration cycle is thus a striking result.

One explanation for the unexpected weak link between 
successive steps of the non-breeding part of the life cycle 
might be that there are simply no COEs. In fact, this would 

Figure 2. Structural equation model with all measured variables for each latent variable. Circles represent latent variables. Squares are 
measured variables. Arr  arrival date; Dep  departure date; Dur  duration of the migration; NDVI  median value of NDVI over the 
wintering period (from October to February); ΔNDVI  difference between February and October values of NDVI; #Br  number of 
broods for each individual in the previous (PBr) or the current breeding season (BsBr); #Fl  number of fledglings raised in first brood in 
the previous (PFl) or the current breeding season (BsFl); PB  previous breeding attempt, AU  autumn migration, WiT  winter timing, 
WiC  winter condition, SP  spring migration, BS  breeding success. Grey and dark arrows represent indirect and direct effects, 
respectively, of latent variables on breeding success with associated parameters. z refers to the residual variance of the latent breeding 
success variable.
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be consistent with the ontogenetic framework and the 
reversible properties of COEs initiated during the adult-
hood. The likely mechanism for fading COEs is compensa-
tion, which has previously been found in long-lived species 
(Conklin and Battley 2012, Conklin et  al. 2013, Clausen 
et  al. 2015) but not in a relatively short-lived species like 

hoopoes. Compensation means that, e.g. individuals arriving 
late on non-breeding sites increase foraging effort or molt 
rates to start spring migration at similar times like early-
arriving individuals (Conklin and Battley 2012, Conklin 
et al. 2013). Such compensation may also explain the weak 
link between spring migration and breeding success in our 

Table 2. Summary of the standardized estimates of the relationships between latent variables from our structural equation model. For each 
parameter we provide the summary of the Bayesian posterior distribution (mean, standard deviation [SD], limits of the credible intervals 
[2.5%, 97.5%]) and the probability that the parameter is strictly positive.

Relationship: Posterior distribution

From To q mean SD 2.5% 97.5% p(|q| 0)

Previous breeding success (PB) autumn migration (AU) g2 0.01 0.36 –0.70 0.77 0.51
Autumn migration (AU) winter timing (WiT) g3 1.49 1.16 –1.31 3.24 0.86
Autumn migration (AU) winter condition (WiC) g4 0.52 0.92 –1.24 2.41 0.71
Winter condition (WiC) spring migration (SP) g5.1 0.14 0.41 –0.63 1.08 0.62
Winter timing (WiT) spring migration (SP) g5.2 –0.19 0.36 –1.07 0.43 0.70
Previous breeding success (PB) breeding success (BS) g1.1 0.62 0.29 –0.48 1.04 0.97
Autumn migration (AU) breeding success (BS) g1.2 –0.01 0.21 –0.44 0.41 0.53
Winter timing (WiT) breeding success (BS) g1.3 –0.03 0.12 –0.27 0.21 0.62
Winter condition (WiC) breeding success (BS) g1.4 –0.02 0.09 –0.20 0.16 0.59
Spring migration (SP) breeding success (BS) g1.5 0.02 0.11 –0.21 0.24 0.56

Figure 3. Estimates of standardized path coefficients from the structural equation model for the annual cycle of hoopoes.
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analysis: birds arriving later on the breeding grounds may 
shorten the pre-laying period and eventually achieve a similar 
breeding performance like birds that arrived earlier (Senner 
et al. 2014). This is probably the case in our hoopoe popula-
tion, in which the arrival date on the breeding ground only 
marginally affects the total number of fledglings (van Wijk 
et  al. 2017). Furthermore, the variability in arrival dates  
on the breeding ground was generally smaller than the 
variability in any other dates of the migration schedule, 
suggesting that all birds arrive on the breeding ground at 
similar dates.

Another explanation for non-existent COEs is that any 
effects of events and processes during the non-breeding 
period might be less importance and thus, masked by the 
dominating effect of the previous breeding season, conditions 
during the current breeding season or individual quality 
(Ockendon et al. 2013, Grimm et al. 2015).

However, there are also methodological issues that may 
affect our ability to detect a potentially existing relation-
ship between stages. In the structural equation approach, we 
did not test the effect of one observed variable to another 
but, instead, defined latent migration variables from depar-
ture dates and duration of migratory stages. Furthermore, 
we added an overdispersion parameter to account for 
noise in these latent variables. This noise may be equally 
or more important than the variance explained by the 
timing component (departure and duration) and then lead 
to weak estimates of the relationship between latent vari-
ables. Although it is unknown so far what produces this 
noise (residual variance), conditions during migration (e.g. 
weather or wind conditions, Liechti 2006), length of migra-
tion routes or number of stop-overs (Arlt et al. 2015) likely 
contribute to it. Such information might be integrated 
into latent variables on finer spatial or temporal scales once 
information is available and further clarify the relationship 
between successive stages.

Carry-over effect on breeding success?

The absence of COEs from migration might be explained 
by the great relative importance of the previous on current 
breeding success. Indeed, we found a strong, positive link 
between successive breeding attempts, suggesting that current 
breeding success is highly correlated with previous breeding 
success.

Following the ontogenetic framework, individual quality 
is the only type of individual difference that is not reversible, 
persists over an individual’s lifetime (Senner et  al. 2015) 
and may explain the highly correlated performance between 
successive breeding. Hoffmann et al. (2015) showed intrinsic 
quality (e.g. ability to occupy a higher quality territory) 
determined double-brooding and individuals of high quality 
typically raised more fledglings in the first brood than lower-
quality individuals, and also more often produced a second 
clutch (Hoffmann et al. 2015).

Alternatively (or in addition to intrinsic quality), 
conditions during the breeding season can influence repro-
ductive output in hoopoes (Martín-Vivaldi et  al. 1999, 
Arlettaz et  al. 2010a), with rain and low temperatures 
decreasing, and higher temperatures increasing breeding 
success. Spring conditions in the breeding grounds were 
quite variable over the last five years (van Wijk unpubl.).  
Yet, despite these fluctuations in breeding conditions, 
breeding performances in consecutive years remained posi-
tively related suggesting that weather has less influence on 
breeding success than individual quality. However, we could 
not clearly distinguish between both sources of variation 
(intrinsic quality or breeding conditions) of breeding success 
due to lack of available data.

Structural equation model as a tool to investigate the 
annual cycle

We used a structural equation modelling approach to 
investigate COEs in the annual cycle rather than classical 
methods such as generalized linear models or path analysis. 
We created a causal framework embracing the full annual 
cycle of a long-distance migrant and separated the effect of 
individual quality from the effects of migration and non-
breeding periods. The low sample size, however, did not 
permit us to compare and select the most likely of sev-
eral alternative causal frameworks. For example, instead 
of using a chronological pathway from one breeding sea-
son to the next, an alternative pathway with other con-
ceptual variables, e.g. for all departure dates irrespective of 
the migration step, length of migration steps, or winter-
ing conditions, etc. could be designed and tested would 
provide a different perspective and supplement our current 
findings.

A step forward could be the combination of several data-
sets (e.g. collected in a systematic way on breeding sites and 
surveys on breeding sites) and/or combination of models 
such as capture–recapture models and structural equation 
models to investigate fitness consequence of individual life 
history. Such solutions may allow the inclusion of more 
individuals in the studied population with the integration 
of imperfect detection (Cubaynes et al. 2012). It could help 
to distinguish between individual heterogeneity and external 
sources of variation, a well-known issue in vertebrates (Cam 
et al. 2013).

Thus, the structural equation model provided a novel tool 
for testing assumptions within a causal framework and for 
estimating the relative importance of potential drivers of 
breeding success. Such models can provide a more general, 
comprehensive view of multi-step processes with the integra-
tion of measurement error and residual variance. When set 
up within a Bayesian framework with incorporation of prior 
information and Markov chain Monte Carlo estimations, 
SEMs deliver reliable results even for low sample sizes (Grace 
et al. 2012).
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Overall, structural equation models are a promising tool 
to investigate causal relationships such as carry-over effects 
and can improve our understanding of complex mechanisms 
such as migration in ecology.
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