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Abstract

Designing an efficient sampling strategy is of crucial importance for habitat suitability modelling. This paper

compares four such strategies, namely, ‘random’, ‘regular’, ‘proportional-stratified’ and ‘equal-stratified’*/to

investigate (1) how they affect prediction accuracy and (2) how sensitive they are to sample size. In order to compare

them, a virtual species approach (Ecol. Model. 145 (2001) 111) in a real landscape, based on reliable data, was chosen.

The distribution of the virtual species was sampled 300 times using each of the four strategies in four sample sizes. The

sampled data were then fed into a GLM to make two types of prediction: (1) habitat suitability and (2) presence/

absence. Comparing the predictions to the known distribution of the virtual species allows model accuracy to be

assessed. Habitat suitability predictions were assessed by Pearson’s correlation coefficient and presence/absence

predictions by Cohen’s k agreement coefficient. The results show the ‘regular’ and ‘equal-stratified’ sampling strategies

to be the most accurate and most robust. We propose the following characteristics to improve sample design: (1)

increase sample size, (2) prefer systematic to random sampling and (3) include environmental information in the design.
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1. Introduction

In predictive habitat distribution models (see

Guisan and Zimmermann, 2000), statistical meth-

ods are used to relate the distribution of a species

to the spatial distribution of environmental pre-

dictors. This is done in a ‘static’ or ‘empirical’ way

by assuming that the distribution of the species is,

at least within a short time frame, in equilibrium

with climate and other factors and has suffered no

major perturbation (Guisan and Theurillat, 2000).

This contrasts with more dynamic approaches that

attempt to model the fate of individuals (see e.g.

Lischke et al., 1998 for comparisons of both

approaches in plant ecology). Several statistical

techniques can be used for this purpose. The

choice depends primarily upon the type of re-

sponse variable modelled. A review of some of
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these techniques can be found in Franklin (1995);

Guisan and Zimmermann (2000).

For instance, when the response variable is

binary (i.e. presence/absence), a popular approach

is to use a generalised linear model (GLM; see

Nicholls, 1989, Guisan et al., this issue), a parti-

cular case of multiple regression, with binomial

distribution and logistic link (or other adequate

links like probit). This approach, also called

logistic regression, is very popular and was suc-

cessfully used by e.g. Pereira and Itami (1991); Le

Duc et al., (1992); Lenihan (1993); Guisan et al.

(1999), as well as in this volume by e.g. Osborne

and Suarez Seoane, Miller and Franklin and

Moisen and Frescino, and by many authors in

Scott et al. (in press) and elsewhere (see e.g.

Guisan and Zimmermann, 2000).

Most statistical models, and GLM in particular,

rely on strong assumptions about the data (see

Guisan et al., this volume), such as their need to be

independently and identically distributed (iid).

Violation of these postulates may lead to biased

model estimations and thus to a lessening of their

predictive ability. A critical step, related to these

assumptions, is hence to know how to optimally

sample the data.

However, discussions on sampling design to be

used for fitting predictive habitat distribution

models are found in relatively few papers (e.g.

Austin and Adomeit, 1991; Austin et al., 1995;

Guisan and Zimmermann, 2000) or textbooks (e.g.

Moore and Chapman, 1986; Jongman et al., 1995),

and only few of them provide satisfactory guide-

lines in the specific context of single species

modelling. A common statement is that, to be

efficient, a sampling strategy needs to be based on

those gradients that are believed to exercise major

control over the distribution of a species, and these

gradients should be considered primarily to stra-

tify sampling (Mohler, 1983; Austin and Heyligers,

1989, 1991; Wessels et al., 1998). The main

environmental gradients in the study area can be

identified in a preliminary exploratory analysis

(e.g. Dufrêne and Legendre, 1991; Aspinall and

Lees, 1994) and used to define a sampling strategy

that is especially designed to meet the requirements

of the model objectives (Mohler, 1983).

The four strategies most frequently discussed
are: (i) regular sampling, for instance along the

two geographic dimensions of a grid covering the

study area (i.e. grid sampling), (ii) random sam-

pling, (iii) equal random-stratified sampling, where

the study area is first subdivided into environ-

mental strata (e.g. using a Geographic Informa-

tion System) and an equal number of plots is

randomly chosen in each, (iv) proportional ran-
dom-stratified sampling, which is similar to the

previous one, but the number of plots randomly

chosen in each stratum is proportional to its

coverage in the study area. A fifth approach,

called gradsect (Austin and Heyligers, 1989;

1991), is close to a random-stratified sampling

(either equal or proportional depending on its

design) but is concentrated within a few geo-
graphic transects designed across the main land-

scape gradients, mainly to reduce study costs

(money and time; cost-effective surveys). Wessels

et al. (1998) have shown that the gradsect

approach proves as effective as a full random-

stratified design in large areas, but at reduced cost

(money and time).

Le Duc et al. (1992), Guisan et al. (1998) are two
examples of studies using a regular grid sampling,

although, in the latter case, the choice of the

sampling strategy was mainly dictated by data

availability. Examples of equal random-stratified

sampling are provided in Maggini et al. (in press),

Wessels et al. (1998). A case of proportional

random-stratified sampling is given in Goedick-

emeier et al. (1997), Guisan et al. (1999). The study
by Goedickemeier and co-workers was again, as in

Wessels et al., focussing on assessing plant diver-

sity. We could not find any example of pure

random sampling used for building habitat dis-

tribution models, but Guisan et al. (1998) used this

strategy to sample the evaluation data set (i.e. for

testing models). However, many examples also

exist of modelling studies based on heterogeneous
data (mostly stored in biological data banks; see

Margules and Austin, 1994), where no design

could be set up prior to the sampling (e.g. Hausser,

1995; Franklin, 1998; Jaberg and Guisan, 2001).

This is usually due to the fact that, in such cases,

optimal locations of survey sites cannot necessarily

be suggested to the observers, especially when they
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are volunteers, or when the data set is a mix of

various data sources. Such data sets, especially

when the number of observations is small, run the

risk of being biased, particularly toward sites

which are more easily accessible (e.g. avoiding

cliffs), or due to their proximity to transportation

pathways, or by some unknown ‘preference’ of the

observers (e.g. for sites with rare and thus inter-

esting species).

Finally, very few studies compare the efficiency

of using different sampling approaches to reach

the same goal (e.g. Austin and Adomeit, 1993).

Furthermore, basing such comparisons on real

data (as in Wessels et al., 1998) runs the additional

risk that the truth is usually unknown, and that the

comparison of results could be partly subjective,

although this is certainly less of a problem when

measuring species richness. Using simulated data

is an interesting alternative in many regards

(Hirzel et al., 2001).

Austin and Adomeit (1993) use simulations to

test different sampling approaches, but in a multi-

species design and with the specific aim of

evaluating the respective cost of each approach

for sampling an optimal number of species (i.e.

diversity). Austin et al. (1995) also have recourse

to a simulation approach, although they build a

single simulated data set in order to compare four

different modelling approaches. Hence, they do

not compare different sampling designs. Finally,

Goedickemeier et al. (1997), Wessels et al. (1998)

also discuss various sampling designs, but their

statistical analyses and discussion concentrate on

the context of biodiversity modelling and assess-

ment, and they do not have recourse to simulated

data. Although each of these studies offers valu-

able insights, they do not answer the specific

question of how to choose an optimal sampling

strategy to model the distribution of a single

species’ suitable habitat. Yet in the early 1980s,

Mohler showed already that, in practice, a random

sampling could lead to truncated response curves

for some species if the extremities of the main

environmental gradients are under-sampled. Stra-

tifying along these gradients and being particularly

scrupulous about sampling the extremities can

assure an efficient sampling of these outer limits.

Since large field surveys are rather expensive
and hence not frequently conducted, related de-

signs usually focus on sampling as many species as

possible in the area (e.g. Austin and Adomeit,

1991). In the case of random-stratified sampling,

this is usually carried out by choosing a propor-

tional number of sample points in each stratum.

However, there are statistical reasons to question

whether or not this method constitutes an optimal
strategy when the distribution of individual species

is their concern. When this is the case, sampling an

equal number of locations in each stratum (as

done e.g. by Maggini et al., in press) might well

prove more powerful. It is particularly important

to answer this question since, as we have seen

previously, very few papers in the literature discuss

this topic, and most focus on biodiversity assess-
ment and/or modelling.

The aim of this paper is to test different

sampling strategies for modelling individual spe-

cies’ distribution, by using simulations of a virtual

species in a real landscape (see e.g. Hirzel et al.,

2001). A simulation approach is a powerful way to

provide quantitative answers to such recurrent

questions, since the factual reality is evident.
More specifically, this study aims to provide the

answers to two main questions:

. Is there an optimal field sampling strategy for

building predictive habitat distribution models?

. What is the effect of sample size on the

predictive ability of a model?

2. Methods

The procedure used in this study was based on

Hirzel et al. (2001). The ecological niche of a

virtual species was defined as the combination of

its hypothetical response curves to 11 environ-

mental variables. This multivariate niche function
was used to generate a true habitat suitability map.

A true spatial distribution map of the virtual

species, based on the above habitat suitability

map, was then generated, by cutting suitability

values at a given threshold (0.7 was used here) to

obtain a presence�/absence map (0/1, binary data).
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No noise was added to the suitability values (as
e.g. used by Mohler, 1983) in order that the

comparisons of the sampling strategies should

remain as precise as possible.

Both maps were then sampled according to four

designs*/namely random, regular, proportionally

stratified and equally stratified sampling. This

produced four simulated data sets, which provided

the values of the environmental predictors as well
as the habitat suitability and presence/absence of

the virtual species for each location sampled. Four

sample sizes (see below) were investigated. These

data sets were then used as input into the GLM

analyses to compute habitat suitability models.

The quality of the models was finally assessed by

comparing their predictions to those of the true

habitat suitability map.

2.1. Virtual species

The virtual species was the ‘equilibrium species’
generated in Hirzel et al. (2001). We refer the

reader to this paper for a description of the

generation procedure. Only the main details will

be recapitulated here.

The 11 environmental variables are taken from a

real landscape, a square region of 25.6 by 25.6 km

located in the Swiss Alps, digitally represented in a

GIS (IDRISI32, Eastman, 1999) as raster maps of
256 by 256 cells. The variables were derived from

land-cover, topography, hydrography and road/
rail network GIS databases (see Table 1).

The ecological niche of the virtual species was

modelled by a weighted sum of three types of

response functions: gaussian (median optimum),

linear (increasing or decreasing) and truncated

linear (increasing to a given threshold value, then

constant). This produced a habitat suitability map

with a value scaled from zero (poor habitat) to one
(ideal habitat) to each cell. In contrast to Hirzel et

al. (2001), no stochasticity was added to these

values.

The true distribution map for the virtual species

was computed by selecting from the latter map all

cells with a suitability value higher than 0.7. This

map indicated all cells where the virtual species

was present.

2.2. Sampling

From the true distribution map, four sampling

designs were simulated with four classes of sample
sizes (S $/100, 200, 400 and 800 points) to

generate 16 data sets. Due to design constraints,

the final size of the data sets differed slightly from

one sampling strategy to another. These data sets

consisted in tables giving the local value of each

environmental variable and the presence/absence

of the virtual species for each location sampled.

The four sampling strategies were applied as
follows.

Table 1

Environmental variables defining the virtual species’ ecological niche

Environmental predictor Response Weight S-plus symbol

Forest frequency Linear (increasing) 6 Forest fq

Elevation Gaussian 5 Alt

Southern aspect freq. Linear (increasing) 2 South

Distance to towns Truncated linear 2 Towns

Distance to forests Linear (decreasing) 1 Forest di

Slope�/308 frequency Linear (decreasing) 1 Slope30

Distance to waters Linear (decreasing) 1 water

Distance to villages Gaussian 1 Towns

Distance to primary roads Truncated linear 1 Roads1

Distance to secondary roads Truncated linear 1 Roads2

Distance to railways Truncated linear 1 Rails

This table indicates for each predictor (first column) its response function (second column) and its weight (third column); the fourth

column gives the symbol used for GLM analyses in S-Plus. These variables were derived from the GEOSTAT and VECTOR200 Swiss

databases. Reproduced from Hirzel et al. (in press).
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2.2.1. Regular sampling

A point was sampled at each node of a regular

grid, whose cell size was adjusted so as to generate

a number of points as close as possible to the

desired number (Fig. 1A). This approach is often

referred to as ‘grid sampling’.

2.2.2. Random sampling

The sample points were drawn completely at

random across the study area (Fig. 1B).

2.2.3. Equal- and proportional-stratified sampling

Four stratifying variables were selected among
the most important for defining the species’

ecological niche, and each was split into four

classes (see Table 2). The study area was then

partitioned by combining these classes to generate

256 (at most) homogenous strata. Two sampling

strategies were based on these strata: (1) The

equal-stratified sampling, where an identical num-
ber of points is randomly selected in each stratum;

the number chosen corresponds as closely as

possible to the total number of points in the

desired sample size (Fig. 1C). (2) The propor-

tional-stratified sampling where a number of

points proportional to its area Ai is drawn in

each stratum (Fig. 1D). In the latter case, each

stratum sample size Ni was thus computed by

Ni�Round

�
Ai

SP
Ai

�
(1)

Some strata were not represented or were too

small. Whenever a stratum sample-size was zero

(with S�/100), it was pooled with similar small

strata to make up an adequate area. The final

number of strata was 114.

2.3. Habitat modelling

Although the response is binary rather than
following a true binomial distribution, we fitted

GLM (see Nicholls, 1989; Guisan et al., this

volume) in S-PLUS (MathSoft Inc.) by specifying

a binomial distribution and a logistic link function.

Guisan et al. (1999) compared this model specifi-

cation to the alternative of fitting a GLM with a

quasi distribution (see Guisan et al., this volume)

and variance equal to m(1�/m), thus allowing for
an automatic estimation of the scale factor rather

than set it to one (the default in binomial models).

This showed that both formulations actually

provided very similar results. However, in many

cases, defining a binomial distribution is simpler.

To compare the performance of models built

from the four sampling approaches, we followed

the same procedure in each case. All models were
fitted on seven predictors set out in decreasing

order of importance (as known from defining the

virtual species’ ecological preferences; Hirzel et al.,

2001). Those variables having a normal or

truncated�/linear response curve were inserted as

quadratic predictors.

Fig. 1. Four strategies to sample 64 points throughout a

landscape defined by two variables: dashed lines represent

elevation classes and the plain line circumscribes a forest; these

two variables therefore define eight strata. (A) Regular grid

sampling (B) random sampling (C) equal-stratified sampling:

each stratum contains eight sample points. (D) proportional-

stratified strategy: each stratum contains a number of sample

points proportional to its area.
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The GLM formula was therefore:

p

a
�a1 alt�a2 alt2�a3 south�a4 forest:fq

�a5 forest:di�a6 water�a7 roads2

�a8 roads22�a9 roads1�a10 roads12 (2)

where p/a is the sampled presence/absence of the

virtual species and ai are numerical regression
coefficients; the predictors are described in

Table 1.

Only the random sampling strategy allowed the

sample size to be fixed. The target sample sizes

were therefore chosen so as to be as close as

possible (cf. Table 3).

2.4. Model evaluation

When working with a virtual species, the fit of

the model can obviously be accurately estimated.

The true value of habitat suitability is actually
known at each location of the study area and its

correlation with the modelled value can be as-

Table 2

Each of the four stratifying variables was partitioned into four equal-range classes or strataa

Variable First stratum Second stratum Third stratum Fourth stratum

Forest frequency (%) [0, 25] [25, 50] [50, 75] [75, 100]

Elevation (m) [500, 1000] [1000, 1500] [1500, 2000] [2000, 2700]

Aspect (8) [0, 90] [90, 180] [180, 270] [270, 360]

Distance to towns (km) [0, 5] [5, 10] [10, 15] [15, 21]

The global stratification was obtained by crossing them to get theoretically 44�/256 strata.
a Actually, some strata were not represented in the study area and some other were too small to be sampled and were therefore

pooled. Finally, 114 strata were used in the simulations.

Table 3

Comparison of the prediction accuracy resulting from the four sampling strategies and four classes of sample sizes

Sampling Sample size Pearson k Errorsb

Meana S.D.a Meana S.D.a

Regular 110 0.575 0.044 0.686 0.068 13

Equal 114 0.583 0.054 0.69 0.067 6

Proportional 125 0.575 0.051 0.688 0.066 8

Random 116 0.571 0.049 0.67 0.073 10

Regular 247 0.636 0.028 0.780 0.024 4

Equal 228 0.634 0.033 0.777 0.028 4

Proportional 240 0.624 0.032 0.771 0.032 4

Random 240 0.621 0.035 0.765 0.034 7

Regular 440 0.656 0.017 0.805 0.016 0

Equal 456 0.660 0.018 0.806 0.014 0

Proportional 453 0.650 0.021 0.801 0.017 0

Random 450 0.653 0.023 0.801 0.017 0

Regular 782 0.664 0.010 0.819 0.007 0

Equal 798 0.668 0.012 0.817 0.008 0

Proportional 812 0.662 0.014 0.815 0.009 0

Random 810 0.661 0.014 0.814 0.011 0

Habitat suitability prediction accuracy is assessed by Pearson’s correlation coefficient; presence/absence prediction accuracy is

assessed by k coefficient of agreement.
a Means and S.D. are computed on 300 replicates.
b A few replicates caused the GLM algorithm to crash; their number is given in this column.
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sessed. Model accuracy was therefore assessed by
two measures.

1) True and predicted habitat suitability indices
were compared by means of a Pearson’s

correlation coefficient computed on all map

cells.

2) The predicted habitat suitability maps*/with

values ranging from 0 to 1*/were rounded

into Boolean maps, thus predicting presence/

absence, using the same 0.7 threshold used for

defining the true presence�/absence map of the
virtual species. The accuracy of this classifica-

tion was then compared with the true dis-

tribution map by mean of the k coefficient of

agreement (Cohen, 1960; see Fielding and

Bell, 1997).

2.5. Simulations

This sampling-modelling-evaluation process was

applied to all 16 sampling situations (4

strategies�/4 sample sizes) and in each case it
was replicated 300 times. Each replicate was

obtained by drawing a new sample from the whole

area, according to the procedures described above;

in the case of the regular grid sampling strategy,

each replicate was obtained by translating the grid

regularly; in this case the replicate number was

restricted, for each sample size, respectively, to 289

(�/172), 169 (�/132) and 100 (�/102).
These replicates were used to compare model-

ling efficiency reached by the four sampling

strategies. Average Pearson’s and k coefficients

were computed for the 4�/4 cases. Finally, for

each sample size, pairs of sampling strategies were

tested by mean of bootstrap statistics (2000 re-

samplings), corrected by the sequential Bonferroni

method (Rice, 1989; base significance level�/0.05).

3. Results

The resulting distributions are summarised gra-

phically in Fig. 2 (habitat suitability prediction

accuracy, assessed by Pearson’s correlation coeffi-

cient) and in Fig. 3 (presence/absence prediction

accuracy, assessed by k agreement coefficient).

Pearson’s coefficients range from 0.30 to 0.71. k
Ranges from 0.23 to 0.83. The mean and standard

deviations of prediction accuracy (computed on

300 replicates) are presented in Table 3. The results

of pair-comparisons are shown in Table 4 (com-

parisons of mean) and Table 5 (comparisons of

S.D.).

The effect of the sample size was to increase the

accuracy of model predictions of both habitat
suitability and presence/absence. However, the

results show that sample size has negligible impact

on the ranking of the four strategies: for habitat

suitability prediction (accuracy measured by the

Pearson’s coefficient), the best strategy tends to be

‘Equal-stratified’, followed by ‘Regular’, ‘Ran-

dom’ and ‘Proportional-stratified’; for presence/

absence prediction (accuracy measured by k

coefficient), the ‘Regular’ and ‘Equal-stratified’

strategies are the best, followed by ‘proportional

stratified’ and ‘Random’.

Increasing the sample size had also the effect of

reducing the dispersion of model accuracy. The

‘Regular’ and ‘Equal-stratified’ samplings tended

to be more robust (narrower dispersion) than the

‘Random’ and ‘Proportional-stratified’, both in
habitat suitability and presence/absence predic-

tion.

Even though statistically significant improve-

ments could be obtained by using one sampling

strategy in place of another, the average

difference*/with a similar sample size*/was never

larger than a few percent. In contrast,

robustness*/measured by replicate standard
deviation*/could often be improved by 30%.

4. Discussion

The goal of this study was to investigate (1) how

prediction accuracy depended upon the sampling

strategy used and (2) how sensitive it was to

sample size. The results show that the most critical
parameter of a sampling design is still sample size.

Choosing the right sampling strategy can improve

the result by a few percent and, more interestingly,

reduce the risk of making a poor prediction. This

is particularly apparent for presence/absence pre-

diction. The maximum accuracy obtained amongst
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all resampling runs is similar for all four strategies,

but the ‘regular’ and ‘equal-stratified’ strategy

never produce such low values as the ‘propor-

tional-stratified’ and ‘random’ strategy do in a

significant number of runs. To put it in another

way, the range of possible accuracy values (i.e.

variability around the mean) increases toward

lower values from regular to equal-stratified to

Fig. 2. Effects of the four sampling strategies and four sample sizes on the accuracy of habitat suitability prediction, as measured by

Pearson’s correlation coefficient. Each box-plot summarises 300 replications of the sampling-modelling procedure. As expected, the

larger the sample size, the better the fit of the model. The ‘equal-stratified’ sampling strategy gives the best results.

Fig. 3. Effects of the four sampling strategies and four sample sizes on the accuracy of presence/absence prediction, as measured by

Cohen’s k agreement coefficient. Each box-plot summarises 300 replications of the sampling-modelling procedure. As expected, the

larger the sample size, the better the fit of the model. The ‘regular’ sampling strategies give the best results.
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random to proportional-stratified sampling (Fig.

3).

This study did not address the problems caused

by biased sampling designs (e.g. accessibility,

detectability biases), as all four strategies under

review were unbiased. The main question thus

centered on how the sample points should be

distributed along the various environmental

Table 4

Pair-comparisons of the sampling strategies

Pairs of sampling strategies Sample size

116 240 450 810

Prediction accuracy measure

Pearson

Regular/equal 0.012 NS 0.247 NS 0.009* 0.000*

Regular/proportional 0.500 NS 0.000* 0.000* 0.101 NS

Regular/random 0.142 NS 0.000* 0.054 NS 0.016*

Equal/proportional 0.025 NS 0.000* 0.000* 0.000*

Equal/random 0.003* 0.000* 0.000* 0.000*

Proportional/random 0.189 NS 0.144 NS 0.045 NS 0.143 NS

k

Regular/equal 0.208 NS 0.083 NS 0.132 NS 0.028 NS

Regular/proportional 0.360 NS 0.000* 0.005* 0.000*

Regular/random 0.000* 0.000* 0.005* 0.000*

Equal/proportional 0.352 NS 0.005* 0.000* 0.000*

Equal/random 0.001* 0.000* 0.000* 0.000*

Proportional/random 0.001* 0.008* 0.438 NS 0.103 NS

The average prediction accuracy values are tested for equality by mean of a 2000-replicates bootstrap. Probability values are then

checked for significance with the sequential Bonferroni method with a 0.05 threshold.

Table 5

Pair-comparisons of the strategies

Pairs of sampling strategies Sample size

116 240 450 810

Prediction accuracy measure

Pearson

Regular/equal 0.003* 0.002* 0.282 NS 0.016*

Regular/proportional 0.033 NS 0.014 NS 0.012* 0.000*

Regular/random 0.055 NS 0.000* 0.000* 0.000*

Equal/proportional 0.237 NS 0.214 NS 0.024 NS 0.012*

Equal/random 0.121 NS 0.235 NS 0.000* 0.011*

Proportional/random 0.352 NS 0.074 NS 0.114 NS 0.457 NS

k

Regular/equal 0.380 NS 0.014 NS 0.044 NS 0.037 NS

Regular/proportional 0.278 NS 0.000* 0.130 NS 0.001*

Regular/random 0.139 NS 0.000 * 0.149 NS 0.000*

Equal/proportional 0.366 NS 0.109 NS 0.002 * 0.040 NS

Equal/random 0.099 NS 0.014 NS 0.002* 0.000*

Proportional/random 0.073 NS 0.135 NS 0.376 NS 0.006*

The S.D. of prediction accuracy values is tested for equality by means of a 2000-replicates bootstrap. Probability values are then

checked for significance with the sequential Bonferroni method with a 0.05 threshold.
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gradients*/how the ‘probes’ should be positioned

in the landscape*/in order to best reflect the area.

The investigation of bias impact on modelling

accuracy could be the goal of a further analysis.

These results give an interesting insight into the

characteristics of a good sampling strategy.

Clearly, the ‘equal-stratified’ and ‘regular’ designs

produce better results than ‘random’ and ‘propor-

tional-stratified’. These four sampling strategies

may be classified along two lines: the first is the

amount of knowledge needed to implement the

strategy; although the ‘regular’ and ‘random’

strategies are purely spatial techniques, both

‘stratified’ strategies need extra information about

the environment. The second axis is the way the

sample points are drawn; the ‘random’ and

‘proportional-stratified’ strategies obey a fairly

loose rule of point selection, whereas the ‘regular’

and ‘equal-stratified’ strategies are more systema-

tic and impose a restricted choice (Table 6).

Actually, with a large sample size, the ‘propor-

tional-stratified’ strategy tends toward pure ran-

domness. What our results show is that the factors

increasing sampling efficiency are, in decreasing

order of priority: (1) to increase sample size, (2) to

use regular sampling and (3) to use environmental

information to stratify sampling.

As sampling is a money- and time-consuming

task, prioritisation of requirements is of great

importance. In this sense, these results show that

stratifying the sampling design*/a method requir-

ing a certain amount of supplementary in-

formation*/does not significantly improve the

model accuracy attained by regular grid designs,

which are far simpler to implement, at least when

the aim is the prediction of presence/absence.

However, further investigations need to be con-

ducted to confirm our results, since these were

obtained for one particular area and a single

virtual species. In particular, one might consider
defining the ecological requirements of the latter in

another way.
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