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Demographic estimation of vital parameters in plants with an unobservable dormant
state is complicated, because time of death is not known. Conventional methods
assume that death occurs at a particular time after a plant has last been seen
aboveground but the consequences of assuming a particular duration of dormancy have
never been tested. Capture�/recapture methods do not make assumptions about time of
death; however, problems with parameter estimability have not yet been resolved. To
date, a critical comparative assessment of these methods is lacking. We analysed data
from a 10 year study of Cleistes bifaria , a terrestrial orchid with frequent dormancy,
and compared demographic estimates obtained by five varieties of the conventional
methods, and two capture�/recapture methods. All conventional methods produced
spurious unity survival estimates for some years or for some states, and estimates of
demographic rates sensitive to the time of death assumption. In contrast, capture�/

recapture methods are more parsimonious in terms of assumptions, are based on well
founded theory and did not produce spurious estimates. In Cleistes, dormant episodes
lasted for 1�/4 years (mean 1.4, SD 0.74). The capture�/recapture models estimated
ramet survival rate at 0.86 (SE�/0.01), ranging from 0.77�/0.94 (SEs5/0.1) in any one
year. The average fraction dormant was estimated at 30% (SE 1.5), ranging 16�/47%
(SEs5/5.1) in any one year. Multistate capture�/recapture models showed that survival
rates were positively related to precipitation in the current year, but transition rates
were more strongly related to precipitation in the previous than in the current year, with
more ramets going dormant following dry years. Not all capture�/recapture models of
interest have estimable parameters; for instance, without excavating plants in years
when they do not appear aboveground, it is not possible to obtain independent time-
specific survival estimates for dormant plants. We introduce rigorous computer algebra
methods to identify the parameters that are estimable in principle. As life-states are a
prominent feature in plant life cycles, multistate capture�/recapture models are a
natural framework for analysing population dynamics of plants with dormancy.
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Demographic analysis is central to ecological research

and applications. For plants, which are by nature sessile,

estimation of rates of survival and transitions between

life-states, and of the numbers in these states, seems a

straightforward task (Harper 1977). However, many

perennial plants have dormant states such as bulbs,

corms, roots, or rhizomes that rest belowground for one

or several growing seasons and are therefore not visible

(Mehrhoff 1989, Light and MacConaill 1991, Waite and

Hutchings 1991, Wells and Cox 1991, Lesica and Steele
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1994, Oostermeijer et al. 1996, Menges and Dolan 1998).

Dormant plants cannot be distinguished from dead ones

without digging them out, which may disturb the system

or be impractical. Dormancy has been identified a major

challenge to demographic modelling of plant popula-

tions such as in population viability analysis (Menges

2000); hence the interest in unbiased estimation of

demographic rates in plants with an unobservable

dormant state.

After an individual has last appeared aboveground

during a study, there is typically a series of years when it

is not seen and is thus either dormant or dead. Two

methods for demographic estimation have previously

been used in this situation: the conventional method,

which comes in several versions, and capture�/recapture

methods. However, the application of either method to

the problem of estimation in the presence of dormancy is

not yet fully understood.

Several conventional methods employ strong assump-

tions about the duration of dormancy. They assume

that either a plant dies immediately when it is not

seen aboveground or that it survives for exactly a cer-

tain number of years dormant and then dies (Hutchings

1987, Gregg 1991, Oostermeijer et al. 1996, Hutchings

et al. 1998, Primack and Stacy 1998, Wells et al.

1998, Lesica 1999). These assumptions have not been

tested, and further, the consequences of making a

particular selection among these assumptions have never

been studied. In contrast, capture�/recapture methods

do not require assumptions about the fate of plants

after they have last been seen. Shefferson et al. (2001)

recognized that the Cormack�/Jolly�/Seber capture�/

recapture model may be used to estimate survival rates

and the fraction of a population in the dormant

state. The probabilistic nature of capture�/recapture

models avoids arbitrary decisions about a fixed and

constant number of years of survival of dormant

plants. In a follow-up paper, Shefferson et al. (2003)

also applied multistate capture�/recapture models to

estimate rates of state transitions among different

life-states. However, they were not able to resolve all

issues regarding the identifiability of the model para-

meters. A proper understanding of parameter identifia-

bility is essential for valid model selection and variance

estimation.

Although any assumption about the fate of plants

after they have been seen for the last time is unlikely

to be exactly true, it is not clear how sensitive the

estimates of survival and state transitions are to

violations of these assumptions. If the assumptions are

not met, and the kind of assumptions made have a

strong influence on the demographic estimates, then

many conclusions from previous studies about life-

history of plants with dormant states may be some-

what flawed.

The aim of this paper is to make a comparison of

different methods to estimate demographic rates in

plants with a dormant state. First we review the methods

used by plant ecologists to estimate survival and life state

transitions rates and the fraction dormant. Then we

emphasize the assumptions required for each method

and assess parameter identifiability when applying

the multistate capture�/recapture model. We compare

the methods in a numerical example by analysing the

population dynamics of the terrestrial orchid Cleistes

bifaria , estimating rates of survival and state transitions

and the fraction of the population that is in the

unobservable dormant state. We then use the most

efficient and most parsimonious (in terms of assump-

tions) method, the multistate capture�/recapture model,

to test whether survival and state transition rates in this

orchid are correlated with climate. Finally, we discuss the

assumptions required for the different methods, give

guidelines for their use and provide perspectives on the

design and analysis of demographic studies of plants

with dormant states.

Methods

Plant demographic data in encounter history format

The data arising from a plant demographic study may be

written in an encounter history such as 0010111000 for

each censused individual. In this row vector, columns

represent years and entries are ones for years when the

individual was recorded and zeroes when it was not.

Often information is available about the life-state of the

individual when seen aboveground, e.g. vegetative or

flowering. Then the encounter history has entries such as

F (flowering) or V (vegetative). A typical encounter

history might be 00V0VFV000 for an individual that is

first encountered in year 3 as vegetative, not seen in

year 4, recorded in years 5�/7 first as vegetative, then

flowering and then vegetative again and not seen

anymore in year 8 and thereafter. Zeroes are ambiguous

with respect to state and fate and mean that an

individual was either not detected aboveground, dor-

mant, or dead. If every aboveground individual is seen

with probability equal to 1, an interior zero (year 4)

represents a dormant individual. In contrast, terminal

zeroes (years 8�/10) mean an individual can be either

dead or dormant. Without excavation, there is no way of

determining if or when an individual dies during years

with terminal zeroes. Terminal zeroes in individual

encounter histories are typical for many plant demo-

graphic studies. Note that the term individual can here

denote either an entire genet, or plant parts such a

ramets (�/shoots), provided that the latter can be

unambiguously identified over the years.
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Models to estimate demographic parameters

We distinguish between two classes of models to estimate

demographic parameters in plants with dormant states;

conventional and capture�/recapture. Common to all are

the following assumptions: 1) all individuals are

independent. 2) No tags are lost or misread. 3)

Probabilities of detection, survival, and state-transition

are homogeneous within life-states (homogeneity of

fate). 4) All aboveground individuals are detected with

certainty, i.e. detection probability equals 1 for all plants

except those in the dormant state. Further, specific

assumptions for each model are described below.

Conventional methods

Previously, plant ecologists used to make strong assump-

tions about when a zero in an observed encounter

history represents a dormant rather than a dead

individual. Specifically, the duration of dormancy was

assumed to be known exactly and to be the same for all

individuals. We describe five different versions of these

methods by how they treat a plant with observed

encounter history 00V0VFV000.

Method 1 (Primack and Stacy 1998) recognizes that a

plant must be dormant in years when there is an interior

zero in its encounter history, but assumes that it dies in

the first year of any number of terminal zeroes. In the

above example, dormancy is assumed for year 4 and

death to occur in the interval from year 7 to 8. Because

dormancy is known to occur by the presence of internal

zeroes, it is obvious that this method must underestimate

survival rates and the fraction dormant.

Methods 2�/4 recognize that a plant will not usually

die immediately at the beginning of a series of terminal

zeroes. They attempt to correct for the downward bias in

method 1 by assuming that a plant is first dormant for

one or several years during terminal zeroes (Gregg 1991,

Wells et al. 1998, Lesica 1999). The maximum duration

of survival of a dormant plant is estimated by the longest

observed dormant episode (run of interior zeroes in an

encounter history). This estimate is used as a yardstick

to decide if and in what particular year a plant has died

when it is not seen aboveground at the end of a study. In

our numerical example with the orchid Cleistes bifaria

(below), runs of interior zeroes lasted up to 4 years.

Conservatively, a plant might be declared dead if it fails

to show up for three consecutive years. In our example

encounter history, dormancy would be assumed for

years 8 and 9 and death in the interval between years

9 and 10. The encounter history would be treated as

00VDVFVDD0. When we compared demographic esti-

mates, we obtained similar results whether we assumed

that a plant stayed dormant for 1, 2, 3, or 4 years before

dying. Therefore we only present results for an assumed

dormancy during terminal zeroes of 1, 2 or 3 years and

refer to them as methods 2, 3 and 4.

Method 5 is an intermediate approach. Plants are

assumed to have died in the interval right after their last

appearance aboveground if they fail to show up for three

consecutive years (Hutchings 1987, Hutchings et al.

1998). In our example, death would be assumed to occur

between occasion 7 and 8. In contrast, had the plant

been recorded aboveground in year 8 as well, the plant

would have been designated as dormant in both years

9 and 10. Method 5 may thus underestimate mortality.

Based on these assumptions, conventional methods

derive estimates of life-state- and year specific survival

and transition rates by simply counting the number of

transitions into the dead and other life-states, respec-

tively, as well as of the fraction of plants in the dormant

state. Standard errors can be estimated as SE�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂�(1� r̂)=n

p
) where r̂ is a survival or transition rate,

or the fraction dormant and n is sample size.

Capture�/recapture methods

We considered two capture�/recapture methods (single-

and multistate capture�/recapture models), depending on

whether there is one or more than one aboveground

state. These methods relax the strong assumption made

by conventional methods about the duration of dor-

mancy. The single state capture�/recapture method is

only a special case of the multistate model.

With one aboveground state, the Cormack�/Jolly�/

Seber (CJS) capture�/recapture model (Lebreton et al.

1992) is useful to estimate survival and the proportion of

individuals dormant. It uses input data such as

001011100. Each encounter history can be written as a

function of parameters for rates of survival, S, and of

detection given survival, p. If it can be assumed that

every marked plant aboveground is detected (‘recap-

tured’), the complement of the detection rate, 1�/p,

reflects the fraction dormant (Shefferson et al. 2001).

This model views dormancy as a form of random

temporary emigration (Kendall et al. 1997). The condi-

tional probability of the above encounter history, given a

plant was first observed in year 3, is given by

Pr (0010111000 ½ first observed in year 3)

�S3(1-p4)S4p5S5p6S6p7

�[(1�S7)�S7(1�p8)

� [(1�S8)�S8(1�p9)[(1�S9)�S9(1�p10)]]]

where Si is survival of a plant between year i and i�/1

and pi is the probability that the plant is aboveground in

year i given that it is alive. The part to the right of the

first multiplication sign models the three terminal zeroes

in the encounter history. Terminal zeroes mean that a

plant has either died, or it survived and went/remained

dormant. Terminal zeroes do contain information about

survival and dormancy, and this information is used

explicitly by capture�/recapture models. Based on the

number of plants with each encounter history, the
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likelihood can be written as a product of multinomials

and maximum likelihood estimates of parameters and

their standard errors obtained numerically (Lebreton

et al. 1992).

In our numerical example (below), we used program

MARK (White and Burnham 1999) to estimate the

average annual survival rate and the average fraction of

dormant plants using model {Sconst, pconst}, where

survival S and the fraction of dormant plants 1�/p

was constant over years. Year-specific annual survival

rates and fraction dormant were estimated using model

{Stime, ptime}. As some individuals may not be indepen-

dent from others, extramultinomial variation was likely

to be found in the data. When not accounted for

properly, such overdispersion leads to an underestima-

tion of standard errors and to the selection of too highly

parameterised models (Anderson et al. 1994). We

estimated the degree of overdispersion in the data based

on 1000 bootstrap repetitions of the respective CJS

model and present adjusted standard errors.

When two aboveground states are distinguished,

multistate capture�/recapture models (Arnason 1973,

Brownie et al. 1993) are useful to estimate rates of

survival and transitions between states. Data for input

look like 00V0VFV000. An important difference to the

CJS model is that multistate models allow the transition

between states between year i and i�/1 to depend on the

state in year i. Hence, under this model, dormancy is a

kind of Markovian temporary emigration (Kendall et al.

1997). Under the assumption that all aboveground

plants are detected, the conditional probability of the

full encounter history in our example can be written as

Pr (00V0VFV000 ½ first observed in year 3 as vegetative)

�SV
3 c

VD
3 SD

4 c
DV
4 SV

5 c
VF
5 SF

6c
FV
6

�[(1�SV
7 )

�SV
7 c

VD
7 [(1�SD

8 )�SD
8 c

DD
8 [(1�SD

9 )�SDD
9 cDD

9 ]]]

where Sr
i is survival of a plant in state r between year i

and i�/1, crs
i is the transition probability of a plant in

state r in year i to state s in year i�/1, given that it

survived to year i�/1, and D, V, and F stand for the

dormant, vegetative, and flowering states.

A product multinomial likelihood can again be written

based on the number of plants with a certain encounter

history, and maximum likelihood estimates are obtained

numerically by such programs as MARK (White and

Burnham 1999), or more recently M-SURGE (Choquet

et al. 2003). In the numerical example (below), we fit

multistate models in MARK by specifying three states

(D, V, and F) and setting detection rate at 0 for the

dormant state and at 1 for the two observable states,

even though state D never actually occurs in the data set

input to the program. This enabled rates of survival and

of state-transitions among all three states to be obtained.

To estimate a state specific, average annual survival and

state transition rate, we intended to use model {Sstate,

Cstate}. However, this was not possible, because the

parameters in this model are not separately identifiable.

Hence, we used model {Sconst, Cstate}, which assumes

that survival is the same for all states. Year specific

annual survival rates were estimated under model {Stime,

Cstate�time}. To estimate the fraction of dormant plants

under the multistate model, we calculated the normal-

ized right eigenvector of the transition matrix.

Because possible non independence of plants might

have introduced extramultinomial variation, we esti-

mated overdispersion for the most general multistate

model {Stime, Cstate�time} by a parametric bootstrap. We

created a perfect data set without any overdispersion

using the MLEs of the most general model as generating

parameters, and calculated G as an omnibus goodness of

fit criterion. This was repeated 1000 times. We estimated

an overdispersion factor for our data set by dividing G

for the actual data by the mean of G for the bootstrap

resamples, and adjusted standard errors accordingly.

This analysis was coded into program MSSURVIV

(Hines 1994) by Jim Hines (pers. comm.), since there is

currently no way to estimate the overdispersion in a

multistate model in program MARK.

Parameter identifiability in the multistate model

It is well known that in the fully time specific CJS model

the last parameters for survival and recapture are not

separately estimable (Lebreton et al. 1992). For the more

complex multistate models with an unobservable state, it

is not yet fully understood which parameters are

separately estimable. We used the completely general

approach of Catchpole, Morgan and Freeman (Catch-

pole et al. 1996, Catchpole and Morgan 1997) to assess

intrinsic parameter identifiability in these multistate

capture�/recapture models. This requires the symbolic

calculation of the rank of a matrix of first order

derivatives of probabilities of survival and transitions,

with respect to the parameters (Gimenez et al. 2003). If

the rank is equal to the number of parameters in the

model, the model is full rank and all parameters are

intrinsically identifiable. If the rank is less than the

number of parameters in the model, the model is

parameter redundant. Hence, the likelihood of the model

can be expressed as a function of fewer than the original

number of parameters. In this case it is still possible that

a subset of parameters are separately estimable and these

can be identified also using this method. Using this

approach, it is possible to determine for each parameter

if it is separately identifiable or if it is only identifiable as

a combination of other parameters. This is a general

result that will apply to each non-sparse data set. For

any particular data set at most these parameters are
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identifiable. If the data are sparse, even fewer parameters

may be estimable.

To test intrinsic parameter identifiability, we consid-

ered the most general multistate capture�/recapture

model {Sstate�time, Cstate�time} along with 14 of its

constrained versions. In these models, survival was either

constant, time-dependent, state-dependent, or state- and

time-dependent (both additive and interacting). The

state transitions were constant over time, or time-

dependent (where time-dependency was either the same

in all states or not). These are the models that we

believed to be particularly useful for plant ecologists. We

used code for program MAPLE that was originally

developed by Catchpole et al. (2002) and then adapted to

multistate models by Gimenez et al. (2003).

Numerical example

We compared all methods on a data set for the perennial

orchid Cleistes bifaria (Gregg and Catling 2002), a

species widely distributed in the SE United States

(Luer 1975). Although self-compatible, C. bifaria

(henceforwards Cleistes ) is naturally outcrossing and

bee-pollinated (Gregg 1989). It occurs in a variety of

acidic habitats: open oak�/pine forests, meadows, and

pine savannas, at elevations up to 1000 m. In West

Virginia, Cleistes flowers in late June to early July.

Reproduction is both sexual by seeds and asexual by

root shoots; hence we use the ramet as demographic unit

in this study and use the term interchangeably with

‘plant’. Considering ramets instead of genets avoids the

need for arbitrarily assigning a state to a genet that

consists of more than one ramet, when these ramets

belong to different states (e.g. flowering and vegetative).

Ramets are (i) vegetative with one, two or very occa-

sionally three leaves, (ii) reproducing (with leaves and

flowers/fruits), or (iii) they do not produce aboveground

structures. Mean ramet heights measured in June 2002

were 18.7 cm (SD�/6.5 cm, n�/214) for vegetative and

37.5 cm (SD�/6.0 cm, n�/51) for flowering plants.

We conducted our study on a flat, seasonally wet,

acidic, ca 9 ha meadow in West Virginia (39816?45ƒN,

79855?58ƒW), where the annual number of flowering

plants ranged from some two dozen to several hundred

throughout the study (K. B. Gregg, pers. obs.). The

vegetation was dominated by grasses, with occasionally

almost pure patches of willow sprouts (Salix sp.),

bracken fern (Pteridium aquilinum ), late low blueberry

(Vaccinium vacillans ), wild indigo (Baptisia tinctoria ),

scattered small saplings of red maple (Acer rubrum ) and

a groundcover of groundberry (Rubus hispidus ) and

numerous stems of sawbrier (Smilax glauca ) (Gregg

1989). Here in 1980, a square 9.15 m plot (area 83.7 m2)

was established.

Every year from 1990�/1999, we searched the entire

plot intensively at fruiting time (July�/September) during

2�/4 surveys to locate all Cleistes ramets, and to map

their location within the plot. We marked each ramet

with numbered plastic tags (approx. 4�/0.75 cm) and

recorded its fate and life-state (absent, vegetative, flower-

ing). An attempt was made to locate all ramets ever

marked previously, as well as to discover new ones.

Plants that had been partly or mostly eaten by herbi-

vores were recognizable and excluded from analysis if

their state could not be assessed. The locations of all

marked ramets not detected at the first survey were

re-checked until almost every tag was found.

Detection probability (p) for marked ramets above-

ground is the product of the probability to find a tag and

the probability to detect an aboveground ramet, given

that its tag had been found. We are confident that we

found all marked ramets when aboveground next to their

tag. Hence, we estimated p as the complement to the

proportion of tags that had not been relocated. Over

10 years, among 3887 tag years, only 18 (0.5%) could not

be relocated. Average detection probability p for marked

ramets was thus �/99.5% and ranged from �/98.1�/100%

in any year. This enabled us to use methods which all

assume that detection probability of individuals in the

aboveground state equals 1.

Climatic factors affecting survival and state

transitions

We studied possible environmental factors affecting

demographic rates in Cleistes using only the multistate

capture�/recapture model that requires the least restric-

tive assumptions of all methods compared. We consid-

ered total annual precipitation (June�/May) during the

current and the previous year, and mean spring tem-

perature (March�/May) and number of freezing days in

spring (March�/May) during the current year. We

obtained these data for Elkins (West Virginia), 42 km

from our study area. Total annual precipitation from

1990�/1998 was 1303.5, 1129.0, 1117.1, 1034.5, 1329.7,

1046.0, 1083.3, 1478.8, and 1032.3 mm, mean spring

temperature from 1991�/1998 was 11.6, 8.9, 8.4, 9.3, 9.7,

8.7, 7.9, and 10.18C and the number of spring frost days

from 1991�/1998 was 26, 34, 32, 39, 36, 39, 49, and 34.

Weather covariates were correlated (range of correlation

coefficients: 0.37�/0.78), so we entered them into the

analysis one at a time. Also, with 10 years of data, we did

not entertain more complex covariate models, e.g. with

quadratic or interaction terms.

Effects on survival were tested by comparison of

model {SX, Cstate�time} with covariate X and model

{Sconst, Cstate�time} with survival rate constant over

time. Similarly, effects on transition rates were tested by

comparison of models {Stime, Cstate�X}/fStime;cstate�Xg

OIKOS 108:2 (2005) 311



and {Stime, Cstate}. Since the likelihood ratio test (LRT)

is inflated when there is overdispersion, we conducted F

tests (Lebreton et al. 1992, p. 106): /Fdf;rdf�
L=df

ĉ
; where L is

the LRT statistic and df its associated degree of freedom.

Rdf is the residual degrees of freedom and ĉ is an

estimate of overdispersion. We expressed the amount of

variation in u (i.e. survival or transition rate) explained

by climatic covariate X as the reduction in deviance D

due to fitting the covariate as (Dfuconstg�
DfuXg)=(Dfuconstg�Dfutimeg): Here, const denotes a

model without time variation, X a model with time-

variation constrained to be a logit-linear function of X,

and time a model with full time variation in parameter u.
In capture�/recapture modelling, it has become custom-

ary to use the Akaike information criterion (AIC) for

selection of the best model among a set of competing

candidates. Therefore, we also present Akaike weights

(w), a standardized measure of relative support by the

data for each model (Burnham and Anderson 1998).

Results

Parameter identifiability in the multistate capture�/

recapture model

Most multistate models likely useful to demographers

had parameters that are identifiable (Table 1). Of

particular interest is that this holds true even for some

models with state specific survival rates, i.e. with one or

more independent parameters for the survival of the

dormant state. However, the parameters in the least

complex model with state specific survival rates {Sstate,

Cstate} are not separately identifiable. It is the time-

dependency of survival and state transition rates that

enables separate survival estimates for the dormant state.

Thus, if the underlying parameters for state-transitions

are constant across time or nearly so, it is not possible to

obtain unbiased estimates even under a time-dependent

model that is intrinsically identifiable. Hence, it may be

possible to obtain state-specific survival estimates with

some data sets, but not with others.

Prevalence of dormancy in Cleistes bifaria

We marked a total of 620 ramets of C. bifaria over the

10-year study period. Of these, 124 appeared for the first

time in the last two cohorts, so dormancy could not be

ascertained for them. Among the remaining 496 plants,

176 (35%) were dormant in at least one year. We

observed a total of 225 dormant episodes with mean

duration of 1.4 yr (1yr 71%, 2yr 19%, 3yr 7%, and 4yr

3%). Some plants had more than one dormant episode

during the study.

Conventional estimates of demographic parameters

in Cleistes bifaria

Estimates from conventional methods all suffered from a

curious artefact: At least one of the state- or time-

specific survival rates was estimated to be 1, hence plants

could never die when in these groups (Table 2a, 3). The

average (non state specific) survival rate estimates ranged

from 0.851 to 0.937 (Table 2a). The fraction of dormant

plants ranged from 0.15 to 0.40 (Table 2b), or,

when averaging over annual estimates, from 0.22 to

0.42 (Table 4), depending on the specific method applied.

Hence, estimates from conventional methods were sensi-

tive to how terminal zeroes in the encounter history were

treated.

Capture�/recapture estimates of demographic

parameters in Cleistes bifaria

Very little overdispersion was detected in the data (CJS

model: c�/1.199; multistate model: c�/1.575), however,

to be conservative, we adjusted model selection

Table 1. Intrinsic identifiability of 15 multistate models useful
for the estimation of survival and state-transition rates in plants
with a dormant state when detectability is known, as deter-
mined by computer algebra methods (Catchpole and Morgan
1997, Gimenez et al. 2003). The table lists parameters that are
separately identifiable, and the number of estimable quantities
(i.e. parameters or combinations thereof), when data for k
capture occasions are available. Parameters are denoted S
(survival rate) and C (state transition rate). Parameters may
be constant over time and states (denoted as const), constant
over time, but different among states (state), time-dependent
and the same in all states (time), time-dependent in each state in
an additive way (state�/time), or time-dependent for each state
separately (state�/time). Subscript m denotes the last parameter
(referring to the interval between occasion k-1 and k). SD

1

denotes survival rate for the dormant state in the first period,
cDY

1 the transition rate from the dormant state D to any other
state Y for the first period, and cXY

m the transition rate from any
state X to any other state Y for the last time period.

Model Identifiable
parameters

Number
of

estimable
quantities

1: Sconst,Cstate All 7
2: Sstate,Cstate None 8
3: Stime,Cstate All k�/5
4: Sstate�time,Cstate All k�/7
5: Sstate�time,Cstate None 3k�/1
6: Sconst,Cstate�time All k�/5
7: Sstate,Cstate�time All k�/7
8: Stime,Cstate�time All 2k�/3
9: Sstate�time,Cstate�time All 2k�/5

10: Sstate�time,Cstate�time All but SD
1 4k

11: Sconst,Cstate�time All but cDY
1 6k�/7

12: Sstate,Cstate�time All but cDY
1 6k�/5

13: Stime,Cstate�time All but Sm, cDY
1 and cXY

m 7k�/10

14: Sstate�time,Cstate�time All but Sm, cDY
1 and cXY

m 7k�/8

15: Sstate�time,Cstate�time None 9k�/18
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Table 2. Comparison between estimation methods for state-specific survival rate (SE) and fraction dormant averaged across years in Cleistes bifaria from 1990�/1999. Transition rate
estimates from the multistate capture�/recapture model are from a model with constant survival and time constant transition rates {Sconst,Cstate}. Fraction dormant in a multistate model
was calculated from the transition matrix with constant state specific values. Fraction dormant in the CJS model is calculated as 1 minus recapture rate in the model {Sconst, pconst}.
Standard errors for estimates under both multistate and CJS models are inflated to adjust for overdispersion (see text for details). For all conventional methods, fraction dormant is
calculated as the observed proportion of plants in the dormant state. . . .. �/ not estimable; aidentical estimates are given for all states since state-dependent estimates could not be obtained
for our data set.

Method/life-state/
transition

MS capture�/

recapture model
CJS capture�/

recapture model
Method 1

1st terminal
0�/death

Method 2
1st terminal
0�/dormant

Method 3
1st�/2nd terminal

0�/dormant

Method 4
1st�/3rd terminal

0�/dormant

Method 5
Intermediate

approach

a) State specific survival rate estimates
Dormant 0.860 (0.009)a 0.861 (0.010) 1.00 (0.00) 0.556 (0.021) 0.733 (0.016) 0.810 (0.013) 1.00 (0.00)
Vegetative 0.860 (0.009)a 0.861 (0.010) 0.735 (0.012) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.883 (0.009)
Flowering 0.860 (0.009)a 0.861 (0.010) 0.817 (0.024) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.904 (0.019)
Mean 0.860 0.861 0.851 0.852 0.911 0.937 0.929

b) Fraction of population dormant
Mean 0.326 0.291 (0.015) 0.150 (0.008) 0.287 (0.009) 0.352 (0.009) 0.398 (0.009) 0.262 (0.009)

c) State-specific transition rate estimates
Dor to dor 0.402 (0.033) . . .. 0.298 (0.026) 0.298 (0.026) 0.610 (0.020) 0.714 (0.016) 0.462 (0.024)
Dor to veg 0.559 (0.032) . . .. 0.655 (0.027) 0.655 (0.027) 0.364 (0.020) 0.267 (0.016) 0.502 (0.024)
Dor to flo 0.040 (0.010) . . .. 0.047 (0.012) 0.047 (0.012) 0.026 (0.007) 0.019 (0.005) 0.036 (0.009)
Veg to dor 0.308 (0.015) . . .. 0.193 (0.009) 0.407 (0.013) 0.407 (0.013) 0.407 (0.013) 0.328 (0.013)
Veg to veg 0.592 (0.016) . . .. 0.691 (0.014) 0.508 (0.014) 0.508 (0.014) 0.508 (0.014) 0.575 (0.014)
Veg to flo 0.100 (0.009) . . .. 0.116 (0.008) 0.086 (0.008) 0.086 (0.008) 0.086 (0.008) 0.097 (0.008)
Flo to dor 0.203 (0.030) . . .. 0.151 (0.025) 0.307 (0.029) 0.307 (0.029) 0.307 (0.029) 0.233 (0.028)
Flo to veg 0.385 (0.033) . . .. 0.410 (0.034) 0.335 (0.030) 0.335 (0.030) 0.335 (0.030) 0.370 (0.032)
Flo to flo 0.412 (0.034) . . .. 0.439 (0.035) 0.359 (0.030) 0.359 (0.030) 0.359 (0.030) 0.396 (0.032)
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and variance estimation. Both models estimated

average annual (non state-specific) survival rate at 0.86

(Table 2a). Year specific survival rate estimates under a

multistate model ranged from 0.77�/0.94 (Table 3) and

were very similar under the CJS model. Surviving plants

in the dormant state moved to the vegetative state most

often, while those in the vegetative and flowering states

remained in their respective states most often (Table 2c).

Only 4% of surviving dormant plants ever became a

flowering plant directly after being dormant. The

average fraction of the population that was in the

dormant state was very similar under either model and

estimated at around 0.30 in Cleistes (Table 2b). How-

ever, there were large annual fluctuations (0.16�/0.47;

Table 4). Both capture�/recapture models thus yielded

very similar results for the key demographic parameters.

Comparison between conventional and capture�/

recapture methods for demographic analysis

As expected, conventional model 1 underestimated

dormancy at only 15% of the population vs 33% and

29% for the capture�/recapture models, respectively; on

the other hand, survival rate was estimated only slightly

lower at 85% rather than 86% (Table 2a,b). Conventional

model 5 overestimated survival at 93%, and results from

conventional models 2�/4 were variable (Table 2a,b).

Certain life-state transition rates were strikingly different

among the models. For example, the MS capture�/

recapture model produced transition rates from dormant

to dormant and from dormant to vegetative of 40% and

56%, respectively (Table 2c). In contrast, for the same

two transitions, the conventional models presented these

respective percentages: 30% and 66% (models 1, 2), 61%

and 36% (model 3), 71% and 27% (model 4), and 46%

and 50% (model 5; Table 2c). That is, two of the

conventional models strongly reversed the dynamics

with regard to transitions from the dormant state.

When estimated with the two capture�/recapture models,

the annual fraction of dormant plants was very similar

(0.29 and 0.33), whereas the estimates varied from 0.15

to 0.40 when using conventional methods (Table 2b).

The variable results from conventional methods show

that parameter estimates are very sensitive to the

additional assumptions made by conventional methods.

Factors affecting survival and state transition rates

Using multistate capture�/recapture models, we found

evidence for climatic effects on both survival and

transition rates in Cleistes. Survival was higher in years

with greater total precipitation (F1,568�/4.20, p�/0.04);

29% of the temporal variation in survival was accounted

for by this relationship (Table 5a). In contrast, there was

no evidence for an effect on survival of spring frost days

(F1,568�/2.64, p�/0.10) or mean spring temperatures

(F1,568�/0.44, p�/0.51). Comparison of these models by

AIC weights indicated that there was considerable

annual variation that was not explained by these

covariates (Table 5a).

Total precipitation in year i�/1 was significantly

correlated with state-transition rates in year i (F1,568�/

5.23, pB/0.001). This relationship accounted for 25% of

the temporal variation in transition rates (Table 5b).

Interestingly, total precipitation in year i�/1 was a much

better predictor of transition rates than was total

precipitation in year i, which had no better fit than a

constant model (F6,584�/1.00, p�/0.42). For all three

life-states, plants were more likely to produce above-

ground shoots between years i and i�/1 when the period

between year i�/1 and i was wet (Fig. 1). Transition rates

of dormant plants were more similar to those of

vegetative than those of flowering plants (Fig. 1a�/c).

In addition, more frequent transitions to the dormant

state were observed with lower mean spring temperature

(F6,584�/4.44, pB/0.001), but there was no evidence for

an effect of the number of spring frost days (F6,584�/

1.52, p�/0.17). Again, comparing these models by AIC

weights indicated the presence of much unexplained

annual variation in transition rates (Table 5b).

Discussion

Comparison of conventional and capture�/recapture

methods

The main difference between conventional and capture�/

recapture methods is that conventional methods do not

use the information contained in terminal zeroes in the

encounter histories. Instead, they make assumptions

about the fate of individuals that are not seen at the

end of an encounter history. In contrast, capture�/

recapture methods do not make such assumptions but

instead use the information about survival and dor-

mancy contained in the terminal zeroes of encounter

histories. Capture�/recapture methods are therefore both

more parsimonious in terms of assumptions and more

efficient in terms of making use of all available informa-

tion.

It is clear from Tables 2�/4 that a relatively wide range

of values can be obtained for estimates of survival and

transition rates depending on which assumption one

makes about the duration of dormancy and the timing of

death. Such results complicate comparisons across

studies, especially since our conventional methods 1�/5

are not the only conceivable ad hoc methods. Further,

particularly striking differences emerged among the

conventional models for transitions from the dormant

state, such that under some models the trends were

essentially reversed from those in others (Table 2c). In
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addition, the spurious results for time-dependent

estimates of survival under all but one of the conven-

tional methods we examined (Table 3) appear unsettling

when survival rates need to be analysed as a function

of explanatory variables. It is likely that a relation-

ship between survival rate and covariates might also be

distorted when using conventional methods. It has to

be noted that the spurious unity survival estimates

are a structural problem of these methods that does

not have anything to do with the particular values of

survival.

A more formal comparison of methods would ideally

involve simulated data to gauge the bias in each method.

We have not done this here, because both the CJS and

the multistate models are very well studied theoretically

and their estimates are known to be asymptotically

unbiased if the assumptions are met (Carothers 1973,

Sandland and Kirkwood 1981, Brownie et al. 1993,

Kendall et al. 1997, Williams et al. 2002, Schaub et al.

2004). In contrast, all conventional methods yielded

spurious unity estimates for survival for either the

aboveground or the dormant state (Table 2a), and for

either the first or the last periods of a study (Table 3).

This fact alone should suffice to discourage their further

use. In addition, the presence of spurious estimates does

not foster optimism regarding the unbiasedness of

estimates from conventional methods.

The strong assumption made about the duration of

dormancy enables conventional methods to obtain

estimates for all parameters in the model {Sstate�time,

Cstate�time}, i.e. including independent, time varying

survival rates for the dormant state. However, the

resulting estimates may be of questionable value, as we

show here. In contrast, an apparent cost of using the

multistate capture�/recapture model is that independent,

time-dependent survival rates may not be obtained for

the dormant state under this model, nor can constant

survival rates for the dormant state be obtained for some

simpler models such as {Sstate , Cstate}{Sstate , Cstate}.

Since the dormant state is unobservable, estimation

turns out to be more complicated.

Some multistate models with time-dependency in

either survival or state transitions allow the estimation

of state specific survival rates. However, since para-

meters in the nested model without time-dependency are

not identifiable, only biased or very imprecise estimates

may be obtained if there is no such time variation in the

data, even when an intrinsically identifiable model is

used (Catchpole et al. 2001). In the Cleistes data we did

not find numerical solutions to models with state specific

survival rates. This may be due to a flat ridge of the

likelihood surface or to sparse data. The numerical

algorithm designed to find the highest point of this

surface may then fail.

We see three ways how to obtain time varying survival

rates. First, one can try to use models with differentT
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constraints. For example, it may be possible to produce

identifiable parameters using models in which survival

rate of only one state is different from that of the other

two. For instance, model fS(V�D;F)�time;cstate�timeg is

identifiable. Still, the same problem as described above

may apply here also, i.e. if there is little variation of

survival rates over time, no useful estimates may be

obtained for a particular data set. Second, a Bayesian

approach may be promising because Bayesian proce-

dures often yield unbiased estimates even when the

likelihood surface has a flat ridge (Brooks et al. 2000).

Third, one could make the unobservable state at least

partially visible by excavating some plants in years in

which they do not appear aboveground. This would

allow dormant plants to be distinguished from dead

plants. We are currently investigating how this additional

information can be incorporated into a multistate

capture�/recapture model that includes an additional

state ‘‘dead’’. In one orchid species, excavation did not

negatively affect plants (Light and MacConaill 1991),

therefore, this may be a viable option. If excavation was

deemed too intrusive and a species is sufficiently

common, repeated samples might be taken of plants

that are not part of a long term survey.

Population dynamics of Cleistes bifaria

A comparison of the demographic estimates from this

study with those from previous studies of terrestrial

orchids is complicated because most have applied

conventional estimation methods (Hutchings 1987,

1989, Gregg 1991, Wells and Cox 1991, Waite and

Farrell 1998, Willems and Melser 1998). In Cleistes,

survival rate varied by year and averaged 0.86 (SEs5/

0.01), close to that for genets of another orchid,

Cypripedium calceolus when it was analysed using the

CJS model (0.88, SE�/0.02; Shefferson et al. 2001).

Most surviving plants in Cleistes remained either in the

same state or moved to the vegetative state. Few

surviving dormant plants directly became flowering

plants in the next year in Cleistes. The fraction dormant

in Cleistes averaged 0.29 but with up to half the

population staying dormant in some years. This is again

similar to CJS results from Cypripedium calceolus, where

the fraction dormant averaged 0.32 (SE�/0.024) but

varied annually from 0.19�/0.59 (Shefferson et al. 2001).

In two populations of another lady’s slipper, Cypripe-

dium reginae, the average ramet survival rate was

estimated at 0.96 and 0.95 and the average fraction

dormant at 0.12 and 0.02, respectively (Kéry and Gregg

2004).

There were large annual fluctuations in both survival

and transition rates in Cleistes. As a result, the annual

fraction dormant fluctuated even more strongly. This is

highly typical for orchid populations that have long beenT
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a classic example of annual fluctuations especially in the

number of flowering plants (e.g. Ophrys apifera , Wells

and Cox 1991). Our results suggest that a greater part of

this variation may be due to redistribution of plants

between life-states, and particularly, to transitions into

the dormant state, and less to variation in survival. Such

fluctuations may distort inference from projection ma-

trix models when based on a few years of data only.

Dormancy thus seems key to an understanding of the

population dynamics of perennial plants with dormant

states. Multistate capture�/recapture models are suitable

to directly model such effects on the transition rates.

In contrast to seed and bud dormancy, little is known

about dormancy of adult life-states in plants, and its

determinants are controversial. Earlier observations of a

lack of synchronized dormancy in a terrestrial orchid

seemed to contradict an effect of climate (Wells 1967). In

contrast, in Cleistes we found evidence for climatic

effects on both survival and state transition rates,

although there was strong temporal variation in both

rates. Although the correlative nature of our study

warrants caution in interpreting these results, precipita-

tion in particular seems to have a crucial effect on the

population dynamics of Cleistes both for survival and

for the redistribution of the ramet population among

life-states. Years with more precipitation were associated

with higher survival in the same year and with fewer

transitions into the dormant state in the following year.

Another recent capture�/recapture study also found

effects of climate on dormancy. In the lady’s slipper

Cypripedium calceolus, dormancy was more frequent

following low precipitation during the previous year, as

well as after low mean spring temperatures and a larger

number of spring frost days (Shefferson et al. 2001). The

direction of the effect of mean spring temperature was

the same in both studies, but in contrast to the

Cypripedium study, we did not detect an effect of the

number of spring frost days.

Table 5. Effects of climate on survival and state-transition rates in Cleistes bifaria . Survival was studied under model
{SX,Cstate�time}, where transition rates are fully state- and time-dependent. Similarly, transition rates were studied under model
{Stime,Cstate�X}. In both cases, X denotes the structure shown under Source of variation. Table entries are the deviance corrected
for overdispersion (QDevi), the proportion of QDeviance explained by a model (% QD), the number of estimable parameters (np),
the overdispersion corrected AIC (QAICc) and Akaike weights (w) for each model. All models are nested in the global model
{Stime,Cstate�time} on which we based estimation of overdispersion (ĉ�/1.575). Numerical convergence was not achieved for
covariate Precipitation June i�1 �/ May i in Table 5a.

Source of variation QDevi % QD np /QAICc /w

a) Modeling survival rate S
Year i 2466.2 100 55 2580.1 0.93
Precipitation Junei�/Mayi�1 2482.7 29 50 2585.9 0.05
No. Frost days Marchi�/Mayi 2485.1 18 50 2588.4 0.02
Constant 2489.3 0 49 2590.4 0.00
Mean temperature Marchi�/Mayi 2488.6 3 50 2591.8 0.00

b) Modeling state transition rates C
State�/Year I 2466.2 100 55 2580.1 1.00
State�/Prec. Junei�1�/Mayi 2623.6 25 20 2664.1 0.00
State�/Mean temp. Marchi�/MayI 2633.9 20 20 2674.4 0.00
State�/Frost days Marchi�/MayI 2661.5 7 20 2702.0 0.00
State 2675.8 0 14 2704.1 0.00
State�/Precipitation JuneI�/Mayi�1 2666.4 4 20 2706.9 0.00
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Fig. 1. Effect of total precipitation (in mm) in year i�/1 on
state-transition rates in year i in Cleistes bifaria . Estimates and
SE are from model {Stime,Cstate�Prec(i�1)} with transitions
between year i and i�/1 constrained to be logit-linear functions
of total precipitation during the interval Junei�1 �/ Mayi. Panels
a�/c are for transitions from the dormant, vegetative, and
flowering state, respectively, and symbols denote the state to
which plants move.
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The assumption of a unity detection rate

A critical assumption made by all methods discussed

in this paper is that the detection probability of

all individuals in the aboveground state is equal to 1.

This assumption needs to be tested, e.g. through a

double-observer study (Kéry and Gregg 2003). In our

study, detectability of the aboveground states of Cleistes

was indeed �/1. However, this will not generally

be the case in a plant demographic study, especially

when only one survey is made per year. Estimates of

demographic rates must then be adjusted for detection

probability. There are three ways with which to accom-

plish this. First, if an estimate of detection probability is

available (e.g. from a double-observer study), it can be

used directly in capture�/recapture models by fixing the

corresponding detection probability. This also works

well if detection probability is time- or state-dependent.

Second, detectability could be estimated as an integral

part of a study by conducting at least two full surveys

every year. This would enable demographic estimates

under the robust design (Kendall et al. 1997, Williams

et al. 2002).

Third, under some conditions detectability may be

estimated as part of a multistate model from the

same encounter history data discussed in this paper

even if only one survey is conducted each year. Con-

sidering only one aboveground stage, Kendall and

Nichols (2002) and Schaub et al. (2004) show that

survival, transition, and detection rates can be estimated

for a range of models provided that the transition

probabilities are Markovian. Using computer algebra

to assess parameter identifiability, we are currently

exploring the same type of models for two aboveground

states. Preliminary results indicate that if there is

significant temporal variation in survival and transition

rates, these models have a behaviour similar to

those with only one aboveground state, and that many

of the models in Table 1 may have identifiable para-

meters even when detection probability is estimated

along with survival and transition rates. This is an

important result, since it would make possible unbiased

estimation of demographic rates even when no ancillary

data are available on detection rate. Statistically rigorous

demographic estimates based on multistate models

may then also be obtained for ‘historic’ data sets for

which it may be not possible anymore to conduct a

sampling survey specifically to estimate detection prob-

ability. Still, there may be costs involved in terms of the

precision of estimates. In addition, models are not

identifiable when either survival or transition rates are

time constant or nearly so. Therefore, the best solution is

probably to collect data in such a way that they can

be analysed with the robust design approach (Schaub

et al. 2004).

Additional issues in demographic studies of plants

with dormant states

Many plant demographic studies involve estimation of

the size of a population (Alexander et al. 1997, Slade

et al. 2003). Such estimations are difficult for species

with dormancy, especially if the annual fraction dormant

fluctuates, as is so typical for many terrestrial orchids. As

a solution, we suggest individually marking and survey-

ing a sample of the population so that the fraction

dormant can be estimated for each year i as (1�/pi) via a

time-specific CJS model. Annual counts (Ci) of the

visible, aboveground fraction of the population can then

be adjusted for plants underground as N̂i�Ci=p̂i; where

N̂i is the estimated population size in year i and p̂i the

estimated fraction of the population aboveground.

With capture�/recapture analysis, it is also possible to

construct a projection matrix for a plant with dormancy.

Models in our study condition on first observation of

plants, i.e. they only describe the probability of events

after first marking an individual. They therefore do not

model the recruitment process, but instead model losses

(the complement of survival) and redistribution between

states (transition rates). The loss and state redistribution

part of a projection matrix can easily be obtained by

multiplying the matrix of state transitions by a vector of

state-specific survival rates. Recruitment would then

have to be added, information about which could either

come from outside the main capture�/recapture study or

estimated directly using a Jolly�/Seber type capture�/

recapture model, such as Pradel’s temporal symmetry

model (Pradel 1996).

Temporal emigration as a unifying concept

Unobservable life-states frequently occur in animal

ecology, e.g. when some animals skip a breeding event

and sampling is conducted only at the breeding sites.

This is known as temporary emigration (Kendall et al.

1997, Schaub et al. 2004). A difference between the CJS

model and the multistate model is that the former

assumes that the state transitions are random, whereas

in the latter models they are Markovian. This means that

under the CJS model it is assumed that the probability of

a plant to become dormant in the next year does not

depend on whether or not the plant is dormant in the

current year. Under the multistate model, the probability

of a plant becoming dormant in the next year may

depend on whether the plant was dormant, vegetative or

flowering in the current year. These assumptions are

testable. The CJS model could be adapted to allow

Markovian transitions (Schaub et al. 2004), and the

multistate model could be constrained in such a way that

the transitions are random. Using formal model selec-

tion it is possible to test which form of transitions is

appropriate for the data at hand.
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Conclusion

Our study shows that different available methods of

studying demography of plants with dormancy may

produce very dissimilar estimates of rates of survival,

state transitions, and of the fraction of dormant

individuals in the population. The differences within

the class of conventional methods were considerable and

show a high sensitivity of the parameter estimates to the

additional assumptions that are required with the

conventional methods. Further, conventional methods

yield spurious estimates of survival rates. We formally

show that many multistate capture�/recapture models,

which require the fewest assumptions of all methods

considered, have parameters that are identifiable. These

latter models yielded insights into the effects of climate

on the demography of the orchid Cleistes bifaria , that

might otherwise have been impossible to obtain in a

statistically rigorous way. Our results suggest that orchid

populations will be sensitive to climate change. We

suggest that conventional methods should not be used

for plant demographic studies involving dormant states.

Better methods with less restrictive assumptions are now

available. Life states are such a prominent feature of

plants that multistate models offer a natural framework

for analysing plant population dynamics.
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