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Quantifying abundance: counts, 

detection probabilities, and estimates

Benedikt R. Schmidt and Jérôme Pellet

25.1  Background: imperfect detection in 
amphibian ecology and conservation

Understanding temporal and spatial variation in distribution and abundance 
has been, and will remain, a central goal in amphibian ecology and conser-
vation. Even though these two quantities, distribution and abundance, are so 
fundamental, we usually cannot observe them directly in the fi eld. We rarely 
observe all individuals, all populations, or all species in an area of interest. 
Imperfect detection is the rule rather than the exception and is a characteristic 
that all fi eld studies share.

Imperfect detection is a trivial fact and herpetologists are often aware of it. 
For example, Hairston and Wiley (1993) attributed all fl uctuations in sala-
mander counts to variation in weather conditions (salamanders tend to remain 
underground during cold weather) and motivation of students (a class of highly 
motivated students found an exceptionally high number of salamanders). This 
implies that salamander detection was imperfect and, equally important, vari-
able among years (Hyde and Simons 2001).

Nevertheless, imperfect detection is all too often ignored when estimating 
abundance or when temporal and spatial trends are analysed. In this chapter we 
pinpoint patterns and the consequences of imperfect detection and show how to 
deal with it in general (Chapter 24 introduces many of the estimators required to 
deal with imperfect detection). We focus on the effects of imperfect detection on 
population abundance estimation but we call attention to the fact that imperfect 
detection also affects other ecological quantities, such as distribution and species 
richness (e.g. Schmidt 2004; Royle and Dorazio 2006; Mazerolle et al. 2007). 
We focus on how the issue of imperfect detection should be incorporated into the 
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466 | Amphibian ecology and conservation

study of amphibians populations; that is, how to sample amphibian populations 
and how to estimate abundance. By doing so, we assume that clear study objec-
tives have been formulated in advance (Yoccoz et al. 2001) and sites appropriately 
selected (see Chapter 23).

25.2 Imperfect detection

It is convenient to use a simple equation to conceptualize imperfect detection:

E C Np( )�

where N is the true value of the parameter of interest (i.e. number of individuals, 
density, number of populations in an area, or species richness) and p is the detec-
tion probability (Gill 1985; Yoccoz et al. 2001; Pollock et al. 2002; Schmidt 
2004). E( ) denotes a statistical expectation. The expectation E(C) is the average 
of the count C over repeated realizations of the sampling process. This equation 
has three major implications that we discuss below.

Sampling a population should be viewed as a stochastic process because it 
involves a probability of detection. This is why there is a statistical expect-
ation E(C) in the above equation. Even under identical conditions we should 
not expect to obtain the same result if we sample the same population mul-
tiple times. We should therefore expect variability in the counts. Variability in 
counts (C) does not imply variation in abundance (N ) or detection probability 
(p); it can simply be random variation. Technically, counts are random varia-
bles. This is illustrated in Figure 25.1. The fi gure shows that, as expected under 
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Fig. 25.1 Expected variation in counts of individuals under identical conditions for 
100 repeated counts, a true population size N � 20 and detection probabilities 
p � 0.2, 0.5, and 0.8. Data were simulated using the R code rbinom(n � 100, 
size � 20, p � x), where x had the values 0.2, 0.5, and 0.8, respectively).
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binomial sampling, variability of the counts is greatest if p � 0.5. The range of 
likely counts is large no matter what the detection probability is.

25.2.1 Counts underestimate abundance

Because p can take any value between 0 and 1, counts almost always under-
estimate true abundance (or other biological parameters such as species rich-
ness or occupancy probabilities). Detection probabilities vary depending on the 
methods used to sample a population. In studies using drift fences, detection 
probabilities can be very close to 1 (Bailey et al. 2004a), meaning that very few 
individuals escape detection. When using other methods, such as hand capture, 
trapping, netting, or cover-board surveys, detection probabilities are usually far 
below 1 (see, for example, case studies and estimates of detection probabilities in 
Mazerolle et al. 2007). Consequently, the discrepancy between counts and true 
abundances increases with decreasing detection probability. Table 25.1 shows 
the correlations between counts and abundance where the true number of indi-
viduals was known. Counts and true abundances are somewhat correlated but 
the proportion of variance explained can be quite low.

Pellet et al. (2007) analysed the relationship between the chorus counts, 
number of captures and mark-recapture estimates of abundance in detail 
(Table 25.2). Their study of the European treefrog Hyla arborea showed that 
calling males represented a variable fraction of the total male population present 
at breeding ponds. In two sites studied over 3 years, the proportion of males call-
ing varied between 0.32 and 0.65, suggesting that there is no solid link between 
chorus activity and (estimated) population size. Similarly, their capture effort 
(total number of males captured) did not truly refl ect actual population size, 

Table 25.1 Results of linear regressions between counts (C), population size esti-
mates (N̂), and censuses for tadpoles of two anuran species. R2 and F tests were 
calculated using PROC GLM in SAS. Asterisks indicate signifi cance at � � 0.05. The 
Lincoln–Peterson estimator was used to estimate abundance. Table adapted from 
Schmidt (2004). Data are from Jung et al. (2002).

Species Studied in Intercept Slope R2 F

Between count and census 
Hyla arenicolor Natural ponds �13.92 1.73 0.66 34.21*
Scaphiopus couchii Mesocosms 12.44 1.17 0.96 283.1*

Between estimate and census 
Hyla arenicolor Natural ponds 18.35 0.87 0.97 1005.0* 
Scaphiopus couchii Mesocosms 15.25 0.94 0.99 1509.0*
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thus demonstrating that population trends estimated from counts (callers or 
captures) are likely to refl ect a mixture of population and detectability trends. 
In addition, Pellet et al. (2007) compared mean chorus counts and maximum 
chorus counts. Mean counts were only 25–63% of the maximum counts. Such 
variability probably arises from the fact that a maximum count is an extreme 
value that is likely to be highly variable spatially and temporally. We argue that 
the maximum count is not a suitable metric if the goal of a study is a comparison 
between years and/or sites. If anything, mean counts would be better compar-
able across sites and years than maxima (but see Schmidt and Pellet 2005 for a 
study where maximum counts predicted population persistence).

Funk et al. (2003) compared the effi ciency of abundance estimates based on 
visual encounter surveys, distance sampling, and mark–recapture methods for 
monitoring population trends of forest-fl oor-dwelling Eleutherodactylus frogs. 
They found that mark–recapture methods were best at estimating abundance 
and the method had the greatest power to detect population declines. Like in 
the examples above, the message is clear: estimates clearly outperform counts in 
refl ecting true population abundances.

25.2.2 Per-visit and cumulative detection probabilities

Detection probabilities come in two fl avors: per visit and cumulative. Whereas 
per-visit detection probabilities may be low, cumulative detection probabilities 
are usually much higher. Cumulative detection probability, p

c
, is given by

p pc
n� � �1 1( )

Table 25.2 Counts and estimates of male European tree frogs (Hyla arborea) in 
two breeding aggregations. Maximum and mean chorus size, as well as number of males 
captured, correlate only weakly with actual (estimated) male population size, demon-
strating the effects of imperfect detection on population size estimates. Adapted from 
Pellet et al. (2007).

 Year Maximum 
chorus size

Mean 
chorus 

size

Total males 
captured

Modeled male 
population 

size�SE

Proportion of 
calling males

Males in 
 population 
Camp Romain 

2002 27 11.4 35 57.9�9 47%
2003 18 6.8 34 49.6�6.9 36%
2004 20 12.5 75 62.1�15 32%

Males in 
population Les 
Mossières 

2002 25 6.9 29 38.5�5.7 65%
2003 15 7.2 30 30.8�1.3 49%
2004 20 7.3 45 46.8�2.2 43%
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where p
_
 is the average per-visit detection probability and n is the number of 

visits or capture events. Per-visit (i.e. per day) detection probabilities of the frog 
Colostethus stepheni in the study of Funk and Mills (2003) ranged from 0 to 1 
with a mean of 0.58 (W.C. Funk, personal communication). Because Funk and 
Mills (2003) had six capture events during a short time period when the popu-
lation did not change, the cumulative capture probabilities were greater than 
0.987. This implies that Funk and Mills (2003) achieved an almost complete 
census of the frogs and suggests that multiple capture events are an obvious way 
to deal with imperfect detection because cumulative detection probabilities can 
be quite high.

25.2.3 Temporal and spatial variation in detection probabilities

Counts of animals are usually made to assess temporal or spatial variation in 
population size. Such comparisons are only valid if E(p) remains constant in 
time or space; however, this is hardly ever the case (MacKenzie and Kendall 
2002), even under strictly standardized methods. If p varies temporally and/or 
spatially then variation in p and N are confounded. In the form of an equation, 
this may be expressed as

E T C C N p N p( ) / /� �1 2 1 1 2 2

Spatial or temporal variation in p
i
 can lead to the detection of spurious temporal 

or spatial trends E(T ). The contrary may also be true: one may miss true pat-
terns in abundance or (under- or) overestimate the effects of variables that are 
thought to explain variation in abundance (Mazerolle et al. 2005). Obviously, 
the absolute values of p matter. If p is high, then bias will be low. If p is low, how-
ever, then most variation in C is likely due to variation in p. For example, if p var-
ies between 80 and 90%, then variation in C will be relatively small. However, 
if a low p varies by the same absolute amount, say between 10 and 20%, then 
variation in C will be relatively greater.

Temporal and spatial variation is the rule rather than the exception. Tacitly, 
Hairston and Wiley (1993) attributed variation in salamander counts entirely to 
variation in detection probability. In the study of Funk and Mills (2003), p varied 
from 0 to 1 depending on prevailing weather conditions (W.C. Funk, personal 
communication). Daily means (across sites) ranged from 0.43 to 0.75 and different 
sites had different means (across days) ranging from 0.43 to 0.90 (W.C. Funk, per-
sonal communication). Most variation in detection probabilities of the European 
treefrog H. arborea in the study of Pellet et al. (2007) was between sites whereas 
Schmidt et al. (2007) found that detection probabilities of Salamandra salamandra 
were low in autumn and high in spring. Bailey et al. (2004a) used a drift fence to 
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capture salamanders (Ambystoma tigrinum) on their way to and from the pond. 
Detection probabilities were high in most years (greater than 90%) but inexplicably 
lower in one year (76%). Although detection probabilities of egg masses of Rana 
sylvatica and Ambystoma maculatum were generally high (usually � 80%), Grant 
et al. (2005) documented substantial spatial and temporal variation in detection 
probabilities that could bias estimates of population trends based on unadjusted 
counts.

25.3 Components of imperfect detection

There are many reasons why detection is imperfect and it makes sense to decom-
pose detection probabilities into its components (Pollock et al. 2004; Nichols 
et al. 2008):

E C Npe( )�

where e is exposure to sampling (also referred to as availability for sampling). 
In this equation, p should best be called detection probability given exposure. 
Nichols et al. (2008) describe how detection probability and exposure to sam-
pling can be further decomposed. Detection probability (p) and exposure to 
sampling (e) are easy to distinguish at the conceptual level. In practice, the dis-
tinction may not always be obvious.

Under different names, exposure to sampling is a well-known phenomenon 
of mark–recapture studies dealing with survival estimation. The two cases 
are transients and temporary emigrants (Williams et al. 2002). Transients are 
animals that show up only once in the study area and then leave. Temporary 
emigrants are animals that leave the study area temporarily during the sam-
pling period and then return (e.g. animals that skip a breeding season). In other 
words, these animals are only partly exposed to sampling and this can cause 
negative bias in survival estimates.

Incomplete exposure to sampling also affects abundance estimation (Kendall 
1999; Bailey et al. 2004b; Royle and Dorazio 2006). Non-exposure to sam-
pling can result from both biological and methodological reasons. Biological 
reasons include brooding salamanders that are underground and not at the sur-
face during the time of survey or frogs that do not breed in a particular year 
and hence do not migrate to the study site which may be a breeding site (e.g. 
pond). Another biological reason may be that only a proportion of all males 
present at a pond may be calling at a particular time. This would explain why 
there is a difference between mean and maximum chorus counts (Pellet et al. 
2007). Methodological reasons may play a part when funnel or minnow traps 

25_Dodd_Chap25.indd   47025_Dodd_Chap25.indd   470 8/19/2009   3:05:51 PM8/19/2009   3:05:51 PM



25 Quantifying abundance | 471

are placed along the edge of a pond and some individuals spend all their time 
near the center of the pond. Non-exposure to sampling may also result from 
breeding phenology. Some individuals may breed early and some may breed 
later in the season (e.g. Sinsch 1988). If the population is sampled only early in 
the season, then many individuals will not be exposed to sampling. This might 
be a case where both biology and method cause non-exposure to sampling.

Non-exposure to sampling can have profound consequences for abundance 
estimation (Kendall 1999). Imagine that the goal of a study is to estimate abun-
dance in a particular area. If amphibians do not move in and out of the study 
area, then an abundance estimator such as the Lincoln–Peterson estimator will 
provide an unbiased estimate the number of amphibians in the area. However, 
if some individuals move randomly in and out of the area (i.e. if they are not 
always exposed to sampling), then the very same estimator will estimate a differ-
ent quantity. It will now estimate the size of the superpopulation where the super-
population is defi ned as the total number of amphibians exposed to sampling at 
least once. This includes all amphibians that are residents in the study area, but 
also all individuals that move in and out or that move through the study area. 
Bailey et al. (2004b) encountered a related problem in their study of salamanders 
in the Appalachian Mountains, USA. They argued that short-term studies where 
salamander movement was negligible yielded estimates of the “surface” popu-
lation (i.e. salamanders exposed to sampling only). Long-term studies, where 
salamanders had time to move from the surface to deeper ground and vice versa, 
gave estimates of the total number of salamanders in the sampled area. Kinkead 
and Otis (2007) describe a similar situation with breeding and non-breeding 
ambystomatid salamanders that were sampled at the breeding site.

If many individuals are not exposed to sampling (low e), then the mismatch 
between the spatial or temporal scale at which a population is sampled and the 
desired temporal or spatial scale of inference is likely to be great. In conclusion, 
study design (both the spatial and the temporal scales) and species behavior can 
jointly determine which biological entity is quantifi ed.

25.4 How to deal with imperfect detection

25.4.1 Estimation of abundance

Evidently, an elegant way to deal with imperfect detection is to estimate detec-
tion probability (p̂). An estimate of detection probability can then be used to 
correct counts (C ) and estimate abundance (N̂ ):

ˆ / ˆN C p�

25_Dodd_Chap25.indd   47125_Dodd_Chap25.indd   471 8/19/2009   3:05:51 PM8/19/2009   3:05:51 PM



472 | Amphibian ecology and conservation

This equation is the conceptual basis for all kinds of abundance estimators, be 
they mark–recapture, distance sampling, point count, removal, or other meth-
ods (Williams et al. 2002; Mazerolle et al. 2007; see also Chapter 24 in this 
volume). When non-exposure to sampling is a problem, then N̂  can only be 
estimated if one knows the fraction of the population that is exposed to sam-
pling as well as the probability of detecting exposed individuals, populations, 
or species:

ˆ / ˆ ˆN C pe�

The best tool to estimate abundance in the presence of non-exposure to sam-
pling is the robust design (see Williams et al. 2002) which has been successfully 
used with plethodontid and ambystomatid salamanders (Bailey et al. 2004b; 
Kinkead and Otis 2007). The robust design allows estimating both abundance 
and non-exposure (known as temporary emigration in this particular case). 
In the previously cited case of the European treefrog (H. arborea), the robust 
design also allowed demonstrating that annual male temporary emigration was 
negligible (i.e. that males rarely skipped breeding seasons; Pellet et al. 2007). In 
contrast, Bailey et al. (2004a) showed that temporary emigration in A. tigrinum 
was substantial.

Other approaches to dealing with non-exposure were described by Royle and 
Dorazio (2006) and Condit et al. (2007). Royle and Dorazio (2006) describe 
a method for point counts that allows dealing with non-exposure to sampling 
that arises from a mismatch between the scale at which data was collected and 
the desired scale of inference. They describe a case where quadrats have only 
been partially searched (in that study, only a fraction of the area of 1 km2 quad-
rats was surveyed). Their method works if there is a suitable covariate (such as 
transect length) that can statistically link the exposed population to the true 
population.

Condit et al. (2007) developed a method for estimating the size of a popula-
tion when individuals are asynchronously present. Their method may be par-
ticularly relevant for pond-breeding amphibians where the breeding season of 
the population is longer than the breeding season of an individual (e.g. in the 
natterjack toad Bufo calamita and the European treefrog H. arborea; Sinsch 
1988; Friedl and Klump 2005).

Methods to estimate abundance are not without problems. Detection prob-
abilities can be low. This will have the effect that confi dence intervals can be 
very wide (Williams et al. 2002). It is possible to make confi dence intervals 
shrink with more effort or better capture techniques. That is, researchers should 
either use better methods that increase per-visit detection probabilities or 
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increase the number of repeat visits such that cumulative detection probabilities 
are increased. However, standard errors and confi dence intervals are not a nuis-
ance. Rather, they are an advantage of estimation methods. Standard errors and 
confi dence intervals are a measure of uncertainty that allow an assessment of 
the estimates’ reliability. Consequently, we view wide confi dence intervals as an 
honest statement whether a particular estimate is or is not particularly reliable 
and useful. Wide confi dence intervals are no reason to discard mark–recapture 
estimates and to prefer the simple counts (C; e.g. Alford and Richards 1999). 
There is also uncertainty associated with counts (because detection probability 
p is unknown) but it is not explicit and is, in fact, unknowable.

Heterogeneity in detection probabilities among individuals can be a problem 
in mark–recapture studies (Link 2003). Heterogeneity usually leads to nega-
tive bias in abundance estimates and in the worst case it may not be possible to 
identify a best model that should be used for inference. We believe that amphib-
ian ecologists and conservationists should attempt to minimize detection prob-
ability heterogeneity among individuals by adopting methods that account 
for variation in detectability among individuals (i.e. grouping individuals into 
homogeneous sets by sexes, colour morphs, age classes).

25.4.2 Other approaches to dealing with imperfect detection

Amphibian ecologists have dealt with imperfect detection in many ways. Some 
authors simply did not analyse data from species where detection was uncertain 
and variable. For example, Pechmann et al. (1991) analysed data from ambysto-
matid salamanders that are unlikely to trespass a drift fence but they did not 
analyse data from treefrogs that could easily trespass a drift fence.

The most common objection to the use of methods that allow estimating 
population sizes and detection probabilities instead of counts is that they are 
demanding in terms of money, human resources, and statistical knowledge. 
This argument was not true in the detailed study of Funk et al. (2003) where 
different methods were compared. We discard this argument because every con-
servation action based on counts is likely to be biased to the point where they 
will be ineffi cient or, worse, counterproductive (Yoccoz et al. 2001). Moreover, 
it will be impossible to evaluate the success of actions taken because no data will 
be available to detect population trends accurately, and to adapt management 
actions accordingly.

Some authors have expressed the view that there is no need to estimate detec-
tion probabilities and to adjust counts accordingly (i.e. estimate abundance). 
One argument put forward in the context of long-term monitoring programs 
is that variability in detection probability does not matter as long as there is no 
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temporal trend in detection probability (Bart et al. 2004; tacitly, this is also the 
reasoning of Hairston and Wiley 1993). In such a situation, variation in detec-
tion probability likely causes extra variability (sampling variability) in the counts 
(in comparison to variation in absolute abundance which is the phenomenon of 
biological interest). Detectability-induced extra variation in the counts means 
that a monitoring program loses power to detect temporal trends. However, one 
should keep in mind that detection probabilities likely show temporal trends. 
Reasons include, but are not limited to, habitat succession or changes through 
time in the ability of the observer to detect the study species (Link and Sauer 
1997).

One commonly held view is that fi eld methods can be standardized to the 
extent where detection probability is constant. If this is the case, then counts 
or other estimates of relative abundance should serve well as proxies for abso-
lute abundance. Unfortunately, variation in detection probabilities is the rule 
rather than the exception (MacKenzie and Kendall 2002). Whenever detec-
tion probabilities of amphibians have been estimated, they were found to be 
variable both within and across seasons (Bailey et al. 2004a, Kinkead and Otis 
2007; Mazerolle et al. 2007; Pellet et al. 2007; Schmidt et al. 2007). This 
was the case even when researchers used standard(ized) methods; even when 
drift fences were used—where the assumption is that detection probability is 
1—there was variation in detection probability (Bailey et al. 2004a). Pellet 
et al. (2007) used the same methods at two sites yet detection probabilities dif-
fered between sites by a factor of approximately two. Hyde and Simons (2001) 
showed that counts obtained from applying four standard methods gave results 
that were only weakly correlated. That is, the use of standardized methods does 
not guarantee that detection probabilities are constant. We believe that stand-
ardization of fi eld methods is important because it can help to keep variation 
in detection probabilities within bounds, but it should certainly not be viewed 
as a panacea.

Standardization of fi eld methods is one solution to limit variation in detec-
tion probabilities. Another solution is to measure covariates that may affect 
detection probabilities and use these covariates at the analysis stage to adjust 
counts (Link and Sauer 1997, 1998). This approach may work well as long as the 
important covariates are known and has been successfully used in large-scale 
bird monitoring programs. However, it may be that the effect of a covariate on 
the counts varies from one site to the next. Lauber (2004) counted alpine sala-
manders (Salamandra atra) along fi xed transects at four sites and tested whether 
weather covariates could be used to predict the salamander counts. An analysis 
of covariance found no main effect of air humidity on counts but there was 
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a signifi cant site-by-air-humidity interaction (Figure 25.2). Air humidity can 
thus be used to adjust counts at some sites but not at others; a likely explanation 
is that sites differ in overall humidity. Grant et al. (2005) also found that no sin-
gle explanatory variable or set of variables best explained variation in detection 
probabilities across sites of egg masses of Rana sylvatica and Ambystoma macula-
tum. This implies that herpetologists must be very cautious when extrapolating 
results from one study site to another. At the planning stage, it also implies that 
one should try to replicate all experiments spatially and temporally to fi nd out 
whether biological patterns are universally applicable.

In conclusion, we believe that the use of standard methods is always valuable. 
Because it does not always avoid variation in detection probabilities, it is better 
to rely on adjusting counts than on the strong assumption that detection prob-
abilities are not showing any trends. We argue that one should assume a priori 
that detection probabilities are less than one and that they are variable in space 
and time. Thus, amphibian ecologists and conservationists should provide evi-
dence for their studies that the counts that they report are indeed reliable indices 
of abundance. Because detection probabilities can vary from one study to the 
next even under apparently highly similar conditions (see examples in Mazerolle 
et al. 2007), the proof has to be provided every time anew.
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Fig. 25.2 Geographic variation in the relationship between salamander (Salamandra 
atra) counts and air humidity. Salamanders were counted multiple times at four 
sites along transects. Analysis of covariance showed no signifi cant main effect of air 
humidity on counts but there was a signifi cant interaction between air humidity and 
site. Data were taken with permission from Lauber (2004).
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25.5 Designing a sampling protocol

The adequate design of a sampling protocol is a fundamental aspect of 
research, whether it be on individuals, populations, or species. Once the 
research or monitoring question addressed has been explicitly formalized 
(Yoccoz et al. 2001) and sites were appropriately selected (see Chapter 23 in 
this volume), it is essential that aspects of imperfect detection are incorpo-
rated into the design. To do so, the procedures of data collection and data 
analysis must be identifi ed in advance. Having a sound knowledge of your 
study species’ ecology will be instrumental in determining which biological 
quantity (e.g. above-ground population size, breeders, super-population) 
your estimator will represent.

Importantly, one must be fully aware that detection probability (p) is not 
only a species trait (see examples in Mazerolle et al. 2007); it also depends 
on methods, observers, year, site, and a myriad of other factors. Because p 
(and exposure to sampling, e) are both variable in space and time, one can-
not apply values obtained in one study to another. For these reasons we rec-
ommend that detection probability is explicitly integrated in all amphibian 
study protocols. Non-exposure to sampling is often hard to deal with at the 
analysis stage (except when using the robust design). We therefore recom-
mend that researchers carefully plan a study such that all animals are exposed 
to sampling.

25.6 Software

There are many computer programs freely available to estimate population 
abundance while incorporating detection probability. The most versatile and 
widely used of them is program MARK (White and Burnham 1999). This 
software, available at www.phidot.org/, allows the analysis of a wide range of 
capture–recapture-based data sets. Every new version incorporates the latest 
development in capture–recapture and thus allows the user to choose from a 
wide range of models the one that will fi t its data best. As the name implies, 
DISTANCE (www.ruwpa.st and.ac.uk/ distance/) is the software tool that 
allows one to design and analyse distance sampling surveys. More recent devel-
opments have been integrated in statistical software such as R and WinBugs. 
These tools have the inconvenience of being less user-friendly than the previously 
listed programs, which benefi t from a graphical user interface. There is soft-
ware that can be used when planning a mark–recapture study (Devineau et al. 
2006; Zucchini et al. 2007).
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25.7 Outlook

Imperfect detection is the feature that the vast majority of all amphibian surveys 
have in common. Complete censuses where all amphibians that are present at 
the study site are captured are not impossible, but require a lot of work (drift 
fences: Bailey et al. 2004a; many capture events: Funk and Mills 2003; Pellet 
et al. 2007). We argue that detection probabilities can be low and highly variable 
among years and/or sites. While counts that are not adjusted for imperfect detec-
tion can certainly indicate negative population trends (Laurance et al. 1996), 
variability in imperfect detection can seriously bias inference from surveys. 
Amphibian ecologists and conservationists should therefore estimate detection 
probabilities as the best tool to calibrate a survey and use robust methods for 
abundance estimation (Williams et al. 2002; Chapter 24). Unfortunately, the 
use of such methods is not yet widespread (Alford and Richards 1999).

The number of methods available for estimation of abundance that account 
for imperfect detection has increased tremendously in the recent past. Existing 
methods are constantly being refi ned, while new methods are being developed 
(e.g. Royle 2004; Royle and Dorazio 2006). Still, all methods need to be used 
with care as sampling design, the behavior of the species, and the estimator used 
all determine which biological quantity is being estimated. Notwithstanding, 
the quality of inference from methods that adjust for imperfect detection will be 
stronger than inference from any other kind of method.

In the future, we ought to be able to estimate abundance with a precision and 
freedom from bias that was not achievable in the past. We should now be able 
to determine which factors infl uence abundance rather than study patterns of 
an inseparable combination of abundance, detectability, and exposure to sam-
pling (such as counts). This will help us gain new insights into fundamental and 
applied aspects of amphibian ecology and conservation.
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