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Systematic species surveys over large areas are mostly not affordable, constraining conservation planners to make best use
of incomplete data. Spatially explicit species distribution models (SDM) may be useful to detect and compensate for
incomplete information. SDMs can either be based on standardized, systematic sampling in a restricted subarea, or —as a
cost-effective alternative — on data haphazardly collated by “volunteer-based monitoring schemes” (VMS), area-wide but
inherently biased and of heterogeneous spatial precision. Using data on capercaillie Tetrao urogallus, we evaluated the
capacity of SDMs generated from incomplete survey data to localise unknown areas inhabited by the species and to
predict relative local observation density. Addressing the trade-off between data precision, sample size and spatial extent
of the sampling area, we compared three different sampling strategies: VMS-data collected throughout the whole study
area (7000 km?) using either 1) exact locations or 2) locations aggregated to grid cells of the size of an average individual
home range, and 3) systematic transect counts conducted within a small subarea (23.8 km?). For each strategy, we
compared two sample sizes and two modelling methods (ENFA and Maxent), which were evaluated using cross-
validation and independent data. Models based on VMS-data (strategies 1 and 2) performed equally well in predicting
relative observation density and in localizing “unknown” occurrences. They always outperformed strategy 3-models,
irrespective of sample size and modelling method, partly because the VMS-data provided the more comprehensive clues
for setting the discrimination-threshold for predicting presence or absence. Accounting for potential errors due to
extrapolation (e.g. projections outside the environmental domain or potentially biasing variables) reduced, but did not
fully compensate for the observed discrepancies. As they cover a broader range of species-habitat relations, the area-wide
data achieved a better model quality with less a-priori knowledge. Furthermore, in a highly mobile species like capercaillie
a sampling resolution corresponding to an individuals’ home range can lead to equally good predictions as the use of exact
locations. Consequently, when a trade-off between the sampling effort and the spatial extent of the sampling area is
necessary, less precise data unsystematically collected over a large representative region are preferable to systematically
sampled data from a restricted region.

Assessing the spatial distribution of rare and endangered
species is essential for efficient conservation management
(Margoluis and Salafsky 1998, Stem et al. 2005). To
comply with the requirements of national and international
biodiversity legislation and conservation programmes, a
variety of survey schemes have been developed (Stem et al.
2005). These are rarely consistent in methodology and
tend to vary with species’ attributes, environmental con-
straints and available financial resources. Vertebrate species
can be particularly challenging to survey, owing to their
high spatial requirements (with regard to both the
individual home range and the area required by a viable
population), elusiveness, spatio-temporal mobility and low
detectability, with recurrent, large-scale surveys often
necessary to appraise their distribution status (Kéry and

Schmid 2004).
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As systematic, repeated sampling over wide areas is often
out of scope, most species surveys are restricted to small
subregions. A cost-effective alternative may be the reliance
on casual species records reported by knowledgeable
volunteers, but volunteer-based montoring schemes’
(VMS) have their caveats: not all of the areas inhabited
by a species are recorded reliably, in particular information
about the species’ absence is missing. Observation densities
can be biased towards areas frequently visited by observers;
and data quality is often very heterogeneous, particularly
with regard to the spatial resolution.

To enhance the informational output of monitoring
programmes for conservation purposes, the use of spatially
explicit species distribution models (SDM) has been
suggested (Brotons et al. 2007). Providing area-wide
predictions about species presence, SDMs can substantially



increase the effectiveness of sampling strategies (Guisan
et al. 2005, Singh et al. 2009) and enhance the detection of
unknown populations of rare species (Engler et al. 2004),
and thus offer the potential to compensate for biased or
incomplete survey information.

A variety of methods exist to model species distributions
(Guisan and Zimmermann 2000, Elith et al. 2006). Yet, as
reliable information on species absence is often lacking, a
focus has recently been placed on methods that rely on
presence—only data (Hirzel et al. 2002, Pearce and Boyce
2006). Presence—only models can either be based on
environmental envelopes characterising the environmental
conditions at the species locations (Busby 1991, Carpenter
et al. 1993) or on techniques that contrast these conditions
with conditions prevailing at random locations (“pseudo-
absences”, Guisan et al. 2005, Pearce and Boyce 2006,
Zarnetske et al. 2007) or throughout the study area (Hirzel
et al. 2002, Johnson et al. 2006, Lele and Keim 2006, Lele
2009).

The effect of input-data quality and quantity on model
performance is addressed by several studies (Engler et al.
2004, Guisan et al. 2005, Edwards et al. 2006, Hernandez
et al. 2006). Most of them concern data collected in
systematic field surveys, others use haphazard VMS-data,
but there is a lack of studies comparing both strategies. This
may be due to the general assumption that models based on
arbitrarily collected data perform worse than those based on
well-designed, systematic sampling (Schreuder et al. 2001),
which has been confirmed for even sample sizes drawn from
the same sampling area (Edwards et al. 2006). In conserva-
tion practice, however, due to typical financial, time and
manpower constraints, a trade-off is often necessary
between the sampling precision, the sample size and the
extent of the sampling area. Consequently, for a conserva-
tion manager it is crucial to know whether it is preferable to
invest limited resources into systematic, precise, but local-
scale sampling or to base models and conservation strategies
on VMS data, area-wide but suffering from the described
biases.

We address this question using capercaillie 7etrao
urogallus data collected in the Black Forest, Germany.
Capercaillie Tetrao urogallus, an indicator species of large,
well structured boreal and montane forests, is highly
endangered throughout its central European range (Storch
2000). This species has high spatial requirements, with
individual annual home ranges of 100-1000 ha (Storch
1995) and a viable population requiring at least 15000 ha
(Suchant and Braunisch 2004). Accordingly, a VMS has
been launched, based on a year-round collation of any signs
of capercaillie presence over the whole ecoregion (Braunisch
and Suchant 2006). In addition, for the purpose of the
comparison, systematic transect counts have been con-
ducted in a small subarea of the same ecoregion.

We compare SDMs based on these sampling strategies
with regard to their capacity to localise unknown areas of
species occurrence and to predict relative observation
densities at a local scale. Addressing the trade-off between
quality, quantity and spatial extent we pose the following
questions: 1) which of the two sampling strategies provides
the better outcome; VMS-data sampled across the whole
study area or systematically sampled data from a small
subarea? 2) How much greater is the informational value of

VMS-data with exact locations compared to the same data
aggregated to a spatial resolution corresponding to an
average individual home range size? 3) Do the results of 1)
and 2) differ relative to the sample size, does one sampling
strategy outperform the other in relation to the amount of
occurrence data that can be expected? As the outcome of
SDMs can further vary according to modelling procedure
(Elith et al. 2006, Brotons et al. 2007), we compare two
presence—only approaches, an ecological niche factor ana-
lysis (ENFA, Hirzel et al. 2002) and a maximum entropy
model (Maxent, Phillips et al. 2006), both popular in
applied conservation planning. By first simulating their
application under “real conservation-management condi-
tions” (i.e. absence of a-priori knowledge, decisions only
based on the clues provided by input data and software),
then comparing the outcome with the estimates from the
approach with the highest predictive performance, we
discuss the possibilities and pitfalls linked with processing
incomplete survey data.

Methods
Study area

The study area encompasses the Black Forest in south-
western Germany, a forested mountain range of ca
7000 km?®, with an elevation ranging from 120 to
1493 m a.s.l. Capercaillie — once present in most of the
forested parts of the study area — has undergone a strong
population decline since the end of the 19th century. The
current population of ca 600 individuals is distributed over
a total area of 51000 ha (Braunisch and Suchant 2006)
arranged as over 100 fragmented patches due to topo-
graphic constraints and human land-use (Suchant and
Braunisch 2004). For systematic sampling a subarea of
23.8 km” was delineated in the northwestern part of the
study area (Fig. 1), with an elevation ranging from 400 to
1163 ma.sl. The subarea was chosen so as to be as
representative as possible with regard to both the environ-
mental conditions given in the study area and used by the
species (Fig. 2).

Capercaillie data

Capercaillie has been monitored in the Black Forest since
1988. All direct and indirect evidence of capercaillie
presence provided by foresters, hunters, ornithologists,
conservation volunteers and research personnel are col-
lected. Every five years (1993, 1998, 2003) the species
distribution is mapped based on all available data. We only
use records where there is repeated evidence that a bird is
using a patch. Specifically, patches are classified as
“inhabited” when at least three capercaillie records occur-
ring with a maximum distance of 1000 m from another
have been collected within the preceding five year period,
and are delineated by the minimum polygon encompassing
these records (for details see: Braunisch and Suchant 2006).
For this study, we randomly subdivided the inhabited
patches of at least 100 ha into calibration and validation
patches (Fig. 1), with the latter meant to simulate
“unknown” areas of species presence. We used a total of
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Figure 1. Distribution area of the capercaillie in the study area,
randomly subdivided into calibration and validation areas (mini-
mum size: 100 ha), with the latter used to simulate areas of
“unknown” species presence. A minimum distance of 1 km* was
applied between both categories. The black rectangle indicates the
location of the subarea used for systematic transect counts.

1178 capercaillie records collected within these patches
during the last monitoring period (1998-2003); n =587
stemming from calibration patches and n=600 from
validation patches, with a minimum distance of 1km
between calibration and validation data. Data were selected
randomly with a minimum distance of 300 m between all
samples to reduce biases arising from spatial autocorrelation
and from multple, non-independent samples of the same
individual (Thiel 2007), although this cannot be totally
excluded as several individuals with overlapping home-
ranges co-occur in a patch. Only the data pertaining to the
calibration areas were used for model generation.

In addition, we conducted systematic transect counts in
the northwestern subarea. Corresponding to the gradsect
approach (Austin and Heyligers 1991), transects were
established in forest stand units (i.e. homogenously struc-
tured forest patches of a mean size of 3.5 ha) so that the
total transect length crossing each forest stand was propor-
tional to its size. Transect counts were conducted twice, in
winter 2003/2004 and summer 2004, resulting in a total
sample size of n =1108.
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Figure 2. Environmental conditions and capercaillie distribution
in the subarea compared to the study area. For each variable, the
range of values given in the study area is set to 100. Grey bars
illustrate the part of the variable range present in the subarea, with
the respective proportions indicated above. In addition, the
distribution of capercaillie samples (median and interquartile
range) is shown. Black squares: VMS-data collected throughout
the study area (dataset 1, n =578), white squares: transect samples
from the subarea (dataset 3, n =1108), dotted line: median of
variable in the respective sampling area. The interquartile ranges
(study area/subarea) given with each variable.

We compared models based on three different sets of
input data. The first (strategy 1) contained the VMS-data
using the exact locations (n =578). For the second (strategy
2) each of these samples was assigned to the next coordinate
plane in the 1 x1km Gauss-Kriiger graticule (Fig. 3),
which was then treated as one single sample location
independent of the number of samples occurring within
the 1 km? grid cell. The 1 km? corresponds to the size of a
small annual capercailliec home range (Storch 1995). This
procedure reduced the original number of presence loca-
tions (n =578) to n =309. The third dataset (strategy 3)
consisted of the data from the systematic transect counts in
the subarea (n =1108). To test whether the model results
were sensitive to the sample size, we performed all analyses
also with a reduced sample set of 60 presence points,
randomly selected from each of the initial datasets.

Environmental variables

We included environmental variables (EV) (Table 1) that
had been proven to explain capercaillie distribution in an
earlier study (Braunisch and Suchant 2007). For each
variable we prepared raster maps with a 30 X 30 m grid.
To adjust the variable resolution to the resolution of the
respective species data set (cf. Guisan and Thuiller 2005),
we calculated the variable mean within circular moving
windows of a size corresponding to the sampling resolution,
that is, 9 ha (300 x 300 m) for the models based on the
species data sets (1) and (3), and 1 km? for the model based
on (2). As multinormality was required for the ENFA
model, the variables were normalised using the Box-Cox
algorithm (Box and Cox 1964). Maps were prepared in
ArcView (ESRI 1996) and converted to IDRISI (Eastman
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Figure 3. Schematic illustration of the three different sampling strategies compared in this study. (1) Data obtained by a volunteer-based
monitoring scheme (VMS) across the whole study area (7000 km?), using the exact sample locations. (2) As (1) but with data assigned to
the next coordinate plane (black cross) of the 1 km? Gauss-Krueger graticule. All samples within the respective 1 km” were aggregated to
one single sample. (3) Systematic transect counts, conducted in the subarea (23, 8 km?).

1990) for use in BIOMAPPER 4 (Hirzel et al. 2007) and
into ASCII format for use in Maxent 3.2.1 (Phillips et al.
20006).

Statistical methods

We applied two modelling methods to each of the six data
sets: an ecological niche factor analysis (ENFA, Hirzel et al.
2002) and a maximum entropy approach (Maxent, Phillips
et al. 2006), both designed to cope with missing absence
data. To simulate application under “conservation-reality”
conditions (i.e. with no independent validation data
available) models were first generated using only the
information provided by the calibration data and the
respective software. Then, in a second step, we compared

Table 1. Environmental variables included in the models.

the models by evaluating their predictive power on the
validation data.

Ecological niche factor analysis (ENFA)

The ecological niche factor analysis (ENFA) implemented
in the software BIOMAPPER by Hirzel et al. (2002), is a
profile based approach which compares the conditions
prevailing on sites with proved species presence with those
found across the entire study area. Comparable to a
principal component analysis, all of the environmental
variables are transformed to the same number of linearly
uncorrelated factors. The first factor explains the species’
marginality, i.e. the difference between the average condi-
tions on the sites where the species occurs (species
distribution) and those across the entire study area (global

Variable category Variable description Code Unit Data source Original
resolution
Landscape variables
Climate Number of days per year with snow cover SNOWD days DEM, modelled according 25 x25 m
>10 cm to Schneider and
Schonbein 2003
Soil conditions Soil conditions, evaluated according to SCVAL index (1-15) Soil condition database Vector data
their potential to support suitable forest 1:10000
types
Topography Slope SLOPE degree DEM 25 x25m
(Topex-to-distance index, distance: 2000 TOPEX (4/—) degree+1000 DEM, modelled according 25 x25 m
m. Low values indicate exposed sites) to Mitchell et al. 2001
Land-use variables
Forest Proportion of forest FOALL % of area Landsat 5 30 x30m
Proportion of coniferous and mixed forest FCOMI % of area Landsat 5 30 x30m
Proportion of forest-agriculture border AGFOR % of area Landsat 5 30 x30m
area (200 m width)
Agriculture Proportion of agriculture AGALL % of area Landsat 5 30 x30m
Distance to agriculture AGDIST m Landsat 5 30 x30m
Settlements Proportion of settlements and urban area URB % of area Landsat 5 30 x30 m
Distance to settlements and urban area URBDIST m Landsat 5 30 x30m
Linear infrastructure  Proportion of area influenced by roads STALL % of area ATKIS Vector data
(plus 100 m buffer) 1: 25000
Proportion of roads (plus 100 m buffer) STTRA % of area xtraffic-index  ATKIS/Ministry of Traffic Vector data
weighted according to average traffic/day 1: 25000
Distance to roads STDIST m ATKIS Vector data
1: 25000
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distribution), indicating the position of the niche in the
environmental space. The subsequent factors explain the
specialisation, i.e. the ratio of global variance to species
variance, indicating the niche breadth (Hirzel et al. 2002).
The predicted frequency of species presence is calculated
from the distribution of species data on the significant first
factors, assigning to each cell in the study area a value,
which is proportional to the distance of this cell to the
species’ optimum in the environmental factor space. The
“area-adjusted median algorithm with extreme optimum”
(Braunisch et al. 2008) was employed here, which was
specifically developed for species in marginal habitats. The
resulting scores range from 0 to 100, with 0 indicating
conditions where the species is not present in the calibration
data set and 100 representing conditions where the species
is most frequently found. Assuming that these conditions
represent the most suitable habitats, these scores are usually
termed “habitat suitability (HS) scores”, and so will be
referred to in the following.

Maximum entropy model (Maxent)

Maxent is a machine-learning technique based on the
principle of maximum entropy (Jaynes 1957) that was
adapted for species distribution modelling by Phillips et al.
(2004, 2006). The method secks to find the probability
distribution of species presence over all cells of the study
area that best agrees with the constraints given by the
observed species locations and, at same time, is closest
possible to uniform (maximum entropy) in order to avoid
any unfounded constraints. As predictors, the environmen-
tal variables and functions thereof (features) are used. We
employed all available feature types namely linear, quadratic
and product features, as well as threshold and hinge features
(Phillips and Dudik 2008). As in logistic regression, each of
these features is weighted by a constant. Starting with a
uniform probability distribution, the weights are iteratively
changed to converge to the probability distribution that best
matches the distribution of the occurrence data set.
Regularisation functions are employed, constraining the
average value for a given feature so as to be close (i.e. within
the confidence intervals) to its empirical average. As this
is a generative approach, Maxent is especially advantageous
when processing small and noisy data sets (Elith et al. 2006,
Phillips et al. 2006). Maxent assigns a sample-likelihood to
each grid cell within the study area. This probability
distribution is exponential to the sum of the weighted
features divided by a scaling constant, which ensures that
the probability values range between 0 and 1 and sum up
to 1. To predict the relative frequency of species presence,
cumulative values were calculated, i.e. each cell was assigned
the sum of the probabilities of this cell and all other grid
cells in the study area with equal or lower probability
multiplied by 100 (Phillips et al. 2006) to achieve values
ranging between 0 and 100. Yet our results can be equally
applied to the other output types of Maxent (“raw” or
logistic output), as we only test the ordering of the
predictions, which is consistent between output types.
The models were run with a maximum of 500 iterations,

a convergen4ce threshold of 107> and a regularisation value
of p=10"".
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Cross validation

The models’ predictive power within their range of calib-
ration was assessed by 10-fold cross validation (Fielding and
Bell 1997) with pairwise differences between models tested
by applying a Student’s t-test on the 10 validation replicates.
Two evaluation indices were calculated.

The area under the receiver operating characteristic
(ROC) curve (AUC) is generally obtained by plotting
sensitivity (i.e. the true positive rate, absence of omission
error) against l-specificity (i.e. the false positive rate,
commission error) for all possible HS scores (Zweig and
Campbell 1993, Fielding and Bell 1997). When no absence
data are available, AUC-statistics can be calculated using a
representative number of background cells instead (e.g.
10 000), randomly chosen from the study area (Wiley et al.
2003, Phillips et al. 2006). In this special case, the AUC
measures the models’ ability to discriminate between
“presence” and “random” rather than between “presence”
and “absence” and the maximum achievable AUC is always
<1 (Wiley et al. 2003). Consequently, as this maximum is
unknown, AUC can only be employed for comparing
models, not for assessing their absolute performance
(Phillips et al. 2006).

The Continuous Boyce Index (CBI) (Boyce et al. 2002,
Hirzel et al. 2006) was especially designed for presence—
only models. It is obtained by plotting the relation between
the predicted number of evaluation points (P) and the
number of points expected by a random distribution (E)
along the HS-value gradient (Fig. 3). The index, defined as
the Spearman’s R between P/E and HS, ranges from 0
(random) to 1 (perfect prediction), with negative values
indicating models that predict worse than random.

Threshold selection

We used the results of the cross-validation to assess the best
cut-off value for discriminating between predicted presence
and absence. Either metric could be used to determine
optimal thresholds, but we followed the defaults provided
with the respective programmes. In the ENFA models,
threshold-selection was based on the continuous Boyce
curve (Supplementary material Fig. Sla). In adherence to
Hirzel et al. (2006), we assigned “presence” to all HS
values larger than the value at which the P/E, including its
90% confidence interval calculated from the 10 cross-
validation replicates, was >1. This corresponds to the
values for which the predicted frequency of species
presence is significantly higher than expected by a random
distribution.

In the Maxent models the threshold for discriminating
between presence and absence was provided by the ROC
curve: by shifting this threshold to larger HS values, the
commission error will decrease but the omission error will
increase (Fielding and Bell 1997) (Supplementary material
Fig. S1b). Thus, when both error types are considered to be
similarly problematic, the best cut-off value corresponds to
the point on the ROC curve where sensitivity and
specificity are maximised; that is, where the total amount
of misclassification is minimised. We determined and
averaged this value over the ten cross-validation replicates.



External evaluation

Predicting areas of “‘unknown”’ species presence

Cohen’s Kappa (k) (Cohen 1960, Fielding and Bell 1997)
was employed for testing the models” capacity to localise the
validation areas (representing “‘unknown” areas of species
occurrence). In addition to the validation-data (n =600) we
randomly selected the same number of pseudo-absences (in
the following referred to as “absence-data”) from the non-
inhabited areas, applying a minimum distance of 1 km to
all inhabited areas (“location”, Fig. 4a). The 1 km-distance
was chosen based on a telemetry study showing that >95%
of all locations of birds sporadically using areas outside of
the mapped capercaillie areas remained within this distance
(Braunisch and Thiel unpubl.). To test whether this buffer
zone influenced the results, and to assess the model’s
precision in predicting the capercaillie core areas, we created
a second set of absence data (n =600) randomly distributed
within the 1 km buffer zone around the validation areas
and with a minimum distance of 100 m from the presence
points (“precision”, Fig. 4b). Kappa was calculated
for all model variants. Pairwise differences between the
K-coefficients were assessed by first estimating the supposed
“common” K-value as described by Fleiss (1981), which
was then used to test for equal k-values on the Chi-square
distribution. Kappa statistics were calculated using the
ArcView 3.3 extension KAPPA STATS (Jenness and
Wynne 2006).
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Effect of threshold selection

We compared the models” performance independent of an a
priori chosen threshold using the validation presence-data
with each of the two absence data sets. First, we calculated
Cohen’s Kappa for all possible thresholds between 0 and
100, keeping the highest Kappa value (Kn.x) as a repre-
sentation of the best possible model fit (Guisan et al. 1998).
A comparison of K., with the value obtained with the
previously chosen threshold (Ky.) showed the extent to
which the model performance was influenced by threshold
selection. Second, we calculated the AUC on both valida-
tion datasets using the R-package
(Freeman and Moisen 2008).

PresenceAbsence

Effect of extrapolation

Model extrapolations are prone to prediction errors,
particularly when extrapolating beyond the environmental
range used for calibration (Dormann 2007), or when
variable importance differs between calibration and extra-
polation area (Graf et al. 2006). To assess whether the
relative performance of the locally calibrated models
(strategy 3) were affected by such errors, we calculated
two additional model variants for each sampling strategy:
the first restricting predictions to the environmental domain
of the subarea (64% of the study area), the second excluding
the variable which differed most in importance between
subarea and study area.
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Figure 4. Results of the 10-fold cross-validation, comparing models based on data obtained with the three different sampling strategies
(indicated by 1, 2, 3) using the full (f) and a reduced (r) data set. Models were evaluated using the area under the receiver operating
characteristics curve AUC (a) and the Continuous Boyce index (b). Asterisks indicate the level of significance (***p <0.001, **p <0.01,

*p <0.05).
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Predicting relative observation densities at a local
scale

Finally, to evaluate the capability of the VMS-data models
(strategy 1 and 2) to predict relative observation densities at
a local scale within a forest stand unit, we compared the
model predictions with the results of the systematic transect
counts in the subarea. First, we calculated the mean HS
score obtained with each of the models for each of the forest
stand units (n =677), which were then subdivided into ten
groups according to their HS score. For each HS-interval
we calculated the number of observations per unit area and
related them to the modelled HS scores using Spearman’s
rank correlation. Pairwise differences between Spearman’s
Rs were then assessed using a two-sided test for differences
between correlation coefficients (STATISTICA, StatSoft
20006).

Results
Relative importance of predictor variables

Although the predictor importance varied between models,
the same variables always ranked amongst the most
important (Supplementary material Table S1). Capercaillie
presence was most positively correlated with cold climate
conditions (SNOWD), a high proportion of forest
(FOALL) and a low proportion of agricultural land
(AGALL). Furthermore, areas with a high soil condition
index (SCVAL) were preferred in all cases, but in models
calibrated in the subarea (3), the relative importance of
SCVAL always ranked much higher than in the models
based on the samples from the whole study area (1, 2).

Cross-validation: model performance within the
areas of calibration

Within their area of calibration, the models generated from
systematically collected data (3) performed best, followed
by those of sampling strategy 1 and 2. However, the
clearness of this pattern differed between the two measured
aspects of model quality: whereas AUC quantifies the
models’ performance to make binary predictions of pre-
sence and absence, integrated over all possible thresholds,
CBI evaluates the models’ capability to predict a smooth,
consistent increase of observation frequencies over the HS-
gradient (Hirzel et al. 2006). Strategy 3 models significantly
ranked first regarding the former aspect (AUC, Fig. 4a), but
there was no evidence of a difference to strategy-1 models
regarding the latter (CBI, Fig. 4b). In addition, Maxent
significantly outperformed the corresponding ENFA-
models with regard to AUC, a similar trend was observed
for CBI. Sample size negatively affected CBI, but not AUC,
with no evidence of a difference between ENFA and
Maxent found in this regard (Fig. 4a, b).

Predicting areas of “unknown”’ species presence
The spatial pattern and range of the predicted capercaillie

distribution differed considerably between models (Fig. 5).
Whereas the strategy 2 models tended to overestimate the
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capercaillie distribution, fewer and smaller areas were
predicted by the strategy 3 models, particularly in southern
regions distant to the sampling area. This applied to both
modelling approaches, but the pattern was more pro-
nounced in Maxent. The VMS-data models using precise
locations (1) and locations aggregated to a 1 km? grid (2)
performed equally well in localising the validation areas
(“location”, Fig. 6a) and in predicting their spatial extent
(“precision”, Fig. 6b). According to Landis and Koch
(1977), their accuracy was good (0.4>x>0.75) to
excellent (€ >0.75) and they always outperformed the
strategy 3 models, which generally revealed a poor agree-
ment with the evaluation data (x <0.4). This finding was
independent of the sample size and consistent over both
methods (ENFA and Maxent). However, while ENFA and
Maxent performed similarly on the VMS-data, Maxent
models were always inferior to ENFA models when
extrapolating from the locally and systematically sampled
data (3). No advantage was recorded for either of the two
approaches when processing the reduced data sets.

Influence of threshold selection

The threshold-independent evaluation generally supported
the results described (Table 2) but the discrepancies
between the VMS-data models (1, 2) and those extrapolated
from local sampling (3) were less pronounced. Models
of data set 1 and 2 performed excellently (AUC >0.9, cf.
Hosmer and Lemeshow 2000) in the first validation step
(“location”) and acceptably (AUC >0.7) to good (AUC >
0.8) in the second (“precision”). Models of (3) were rated
acceptable to good in the first step, and acceptable to poor
(0.6 <AUC <0.7) in the second evaluation step. In the
models based on strategies (1) and (2), the accuracy
obtained with the pre-selected threshold (k_thres) was on
average 80% (range: 52-99%) of the maximum achievable
accuracy (k_max), but it deviated >50% from the
optimum in strategy 3 models. This indicated that their
inferiority was not solely related to a lower generalisation
capacity, but also to a greater inaccuracy in providing
transferable clues for threshold-selection.

Effect of extrapolation

Restricting the extrapolations to the environmental domain
of the subarea reduced the qualitative differences between
the strategy 3 models and the corresponding VMS-based
models (Table 3). Omitting the variable “soil conditions”
(SCVAL, Supplementary material Table S1) only reduced
differences in AUC-values in the Maxent models. However,
both modifications were associated with a decrease in
predictive power in the corresponding VMS-models.

Predicting relative observation densities at a local
scale

All models built from VMS-data were very successful
in predicting relative observation densities at the local
(forest stand) scale, with Spearman’s correlation coefficients

ranging between 0.745 and 0.988 (Table 4). Exact sample
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Figure 5. Species distribution maps predicted by ENFA (E) and Maxent (M) models based on species data obtained using three different
sampling strategies. (1) Volunteer-based monitoring data with precise locations, (2) volunteer-based monitoring data aggregated to a

1 km? grid, and (3) systematically sampled data from the subarea.

locations tended to perform better than samples aggregated
to a home range-sized grid, and Maxent generally provided
slightly better results than ENFA, but these differences were
not significant. Reducing the sample size to sixty presence
points did not lead to a significant decrease in model
predictions either.

Discussion

Assessing species distributions in conservation practice
usually entails two major challenges: first, optimising
sampling strategies with limited resources; second, max-
imizing information return from limited data. Both aspects
were addressed here. We first tested the effect of spatially vs
qualitatively limited sampling on species distribution
models; second, we evaluated the performance of these
models to fill the gaps inherent to fragmentary survey data
(predicting unrecognized, but inhabited areas as well as
relative observation densities). However, as the capercaillie
areas we used to simulate areas with unknown species
presence were also mainly inferred from VMS-data, they
may be suspected to provide an insufficient, as potentially
incomplete, basis for model evaluation. We consider this to
be a minor problem here. First, the Black Forest is highly
accessible and the monitoring programme is supported by a
large number of well-trained people. Most parts of the
study area are sampled by several people simultaneously

(Suchant et al. 2005). Therefore, we expect the probability
of the species having remained undected within entire
inhabited patches to be very low. Second, systematic
samplings (e.g. this study) and telemetry studies (Thiel
et al. 2008, Braunisch and Thiel unpubl.) in different pilot
areas of the Black Forest were found to match closely the
distribution mapped from VMS-data, indicating a good
spatial precision. Nevertheless, as we do not know the true
species distribution with absolute certainty, we can only
compare, but not test the models™ accuracy.

Model generation: precision vs scale

Choosing an appropriate spatial scale is a central issue in
SDM building (Wiens 2002). We compared sampling
strategies that differed with regard to both relevant
dimensions of scale, spatial resolution — or precision —
(strategy 1 and 3 vs 2), and extent (strategy 1 and 2 vs 3).

1) Sampling resolution

Sampling resolution should optimally be chosen as to be
coherent with the resolution of the predictor variables, and
to correspond to the scale relevant for habitat selection
processes (Guisan and Thuiller 2005, Guisan et al. 2007).
Whereas for sessile organisms all necessary features have to
be present at the same location, in highly mobile species like
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Figure 6. Accuracy of ENFA and Maxent models predicting capercaillie presence and absence, with absence data collected outside (a,
“location”) and within (b, “precision”) a 1 km buffer around the presence data. Three sampling strategies are compared: (1) volunteer-
based monitoring data, precise locations, (2) as (1) but data aggregated to a 1 km? grid, (3) systematically sampled data from a small
subarea. Models were generated using the full dataset (ng ) =587, nz) =1 108, and a reduced number of presence points n(; 5 3y =60).
Cohen’s Kappa (k) is indicated. Asterisks indicate the level of significance (***p <0.001, **p <0.01, *p <0.05). Differences between all
possible pairs of k—values are given in Supplementary material (Table S2).

capercaillie several different types of habitat features may be
required within a certain surrounding. In this case, the use
of precise locations in SDM may imply pseudo-accuracy,
and must not necessarily result in a substantial model
improvement than when adapting the resolution to an
average individual home range. Downscaling the resolution
can even be advantageous to account for a required habitat
mosaic (Jaberg and Guisan 2001). This can explain the
good performance of the low-resolution model (sampling

strategy 2) and is supported by Graf et al. (2005) who
found that a spatial resolution corresponding to a small
home range best explained capercaillie distribution in the

Swiss Alps.

2) Sampling extent: interpolation vs extrapolation

Animal conservation
do the requirements

often concerns large areas and so
for model predictions. When data

Table 2. The models” accuracy to predict capercaillie presence and absence, with absence data collected outside (A, “location”) and within
(B, “precision”) a 1 km buffer around the presence data. The maximum Kappa (kmax) and the area under the receiver operating characteristics
curve (AUC) are provided. Differences between «max and mean Kinres, (i-€. the Kappa value obtained when applying a threshold according to
the criteria described in Supplementary material Fig. S1) are presented. Deviations between Kmax and Kinres >50% are highlighted.

Model Sample size  Data set (A) “location” (B) “precision”
k_thres K_max diff (%) AUC x_thres K_max diff (%) AUC
ENFA full 1 0.660 0.777 15.06 0.946 0.452 0.470 3.90 0.792
2 0.650 0.752 13.56 0.943 0.382 0.408 6.45 0.765
3 0.277 0.645 57.11 0.816 0.220 0.442 50.23 0.752
reduced 1 0.600 0.763 21.36 0.917 0.430 0.467 7.92 0.783
2 0.627 0.745 15.88 0.908 0.373 0.402 7.13 0.744
3 0.260 0.573 54.62 0.765 0.208 0.400 47.92 0.710
Maxent full 1 0.658 0.833 20.97 0.952 0.448 0.498 9.97 0.813
2 0.780 0.842 7.36 0.968 0.428 0.432 0.85 0.767
3 0.075 0.332 77.41 0.666 0.068 0.227 69.90 0.617
reduced 1 0.430 0.823 47.75 0.939 0.322 0.470 31.56 0.793
2 0.445 0.857 48.07 0.959 0.293 0.435 32.57 0.774
3 0.047 0.485 90.38 0.744 0.042 0.337 87.64 0.673
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Table 3. Effect of extrapolation on the predictive power of the strategy-3 models calibrated in the subarea. We compare (a) full extrapolations to the whole study area, (b) extrapolations restricted to the
environmental domain of the subarea, (c) extrapolations with the potentially biasing variable SCVAL omitted. The capability to predict capercaillie presence and absence is evaluated using kmax and AUC
(incl. SE), with absence data collected outside (A, “location”) and within (B, “precision”) a 1 km buffer around the presence data. Bold values indicate the mean deviance of the strategy 3 models from the
two VMS-based models.

Data set K_max (SE) AUC (SE)
a b C a b C
A “location”

ENFA 1 0.777 (0.018) 0.644 (0.025) 0.743 (0.019) 0.946 (0.006) 0.887 (0.011) 0.933 (0.007)
2 0.752 (0.019) 0.604 (0.027) 0.697 (0.020) 0.943 (0.006) 0.883 (0.011) 0.921 (0.008)
3 0.645 (0.021) 0.609 (0.026) 0.385 (0.021) 0.816 (0.012) 0.863 (0.012) 0.722 (0.014)

—0.12 —0.01 —0.34 —0.13 —0.02 —0.21
Maxent 1 0.833 (0.016) 0.734 (0.022) 0.822 (0.016) 0.952 (0.006) 0.929 (0.008) 0.964 (0.005)
2 0.842 (0.016) 0.734 (0.022) 0.818 (0.017) 0.968 (0.004) 0.934 (0.008) 0.970 (0.004)
3 0.332 (0.020) 0.304 (0.023) 0.293 (0.020) 0.666 (0.010) 0.885 (0.011) 0.905 (0.009)

—0.51 —0.43 —0.53 —0.29 —0.05 —0.06

B “precision”

ENFA 1 0.470 (0.025) 0.420 (0.030) 0.460 (0.026) 0.792 (0.013) 0.766 (0.016) 0.782 (0.013)
2 0.408 (0.025) 0.358 (0.030) 0.388 (0.026) 0.765 (0.014) 0.737 (0.016) 0.751 (0.014)
3 0.442 (0.026) 0.414 (0.030) 0.288 (0.025) 0.752 (0.014) 0.756 (0.016) 0.697 (0.015)

0.00 0.02 —0.14 —0.03 0.00 —0.07
Maxent 1 0.498 (0.025) 0.449 (0.029) 0.475 (0.025) 0.813 (0.012) 0.788 (0.015) 0.814 (0.012)
2 0.432 (0.026) 0.379 (0.030) 0.417 (0.026) 0.767 (0.014) 0.751 (0.016) 0.756 (0.014)
3 0.227 (0.023) 0.215 (0.026) 0.225 (0.023) 0.617 (0.013) 0.736 (0.016) 0.749 (0.014)

—0.24 —0.20 —0.22 —0.17 —0.03 —0.04




Table 4. Performance of models in predicting the relative frequency of species presence at a local scale. Spearman rank correlations between
modelled HSI scores (10 classes) and recorded observation density (n ha™") in the subarea are presented, comparing models based on VMS-
data with exact locations (1) and locations aggregated to a 1 km? grid (2). Two modelling methods (ENFA and MAXENT) and two different
sample sizes (“full”: n =587 and “reduced”: n =60) are compared. No significant differences between Spearman’s R’s were recorded.

Method Data set Sample size Spearman’s R t (N-2) Level of significance
(p-value)

ENFA 1 full 0.915 6.421 0.001

2 full 0.770 3.410 0.01

1 reduced 0.927 7.005 0.001

2 reduced 0.745 3.163 0.05
Maxent 1 full 0.960 9.761 0.001

2 full 0.976 12.550 0.001

1 reduced 0.988 18.000 0.001

2 reduced 0.818 4.025 0.01

collection is spatially limited, extrapolations to areas outside
the sampling region are required. The predictive power of
extrapolated SDMs is often poor, however (Guisan and
Zimmermann 2000, Graf et al. 2006). First, when the
range of environmental conditions in the calibration area
covers only a small part of the species’ fundamental niche,
extrapolations of the species response curve beyond this
range can lead to incorrect predictions (Austin et al. 1994,
Thuiller et al. 2004). Second, species-habitat relationships
can vary greatly between regions (Wiens et al. 1987) and
spurious correlations to environmental conditions not
present in the extrapolation area or predictors that are
substitutable by others may lead to underestimations of the
species distribution (Guisan and Zimmermann 2000). This
is particularly problematic when using surrogate variables
with no direct ecological significance for the species — often
necessary in large-scale models, as digital maps of direct
predictors (e.g. vegetation data) are mostly not available
over large expanses. In fact, our models’ predictive power
was mainly determined by differences in the sampling
extent and the required amount of extrapolation. The
precise, systematically collected data performed best within
their small calibration area (Fig. 4), which agrees with the
findings of Edwards et al. (2006), but predicted poorly over
the whole study area. Here, capercaillie presence was most
accurately predicted based on the area-wide VMS-data,
which only required spatial interpolation.

The generality of a model can essentially be improved by
increasing the variation in the data while capturing the
broadest possible range of environmental conditions defin-
ing the species’ niche (Pearson and Dawson 2003, Thuiller
et al. 2004, Guisan and Thuiller 2005) and extrapolations
are most successful when the new region is similar to the
calibration area (Whittingham et al. 2003, Graf et al
20006). The latter aspect is particularly important when
using presence—only approaches, as there are no absence
data to contrast the presence data with. Because they
discriminate between “presence” vs “random” or “used” vs
“available”, these models (and their extrapolations) are not
only sensitive to the range of conditions at the species
locations, but also to the conditions available (Pearce and
Boyce 2006).

Although chosen so as to maximise representativeness,
the environmental conditions in our subarea inherently
covered only a part of the variable-ranges present in the
study area. For the most important predictors (i.e.
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SNOWD, AGALL, FOALL, SCVAL, Table 1) these
proportions ranged between 98% (SNOWD) and 56%
(AGALL). In addition, for most variables there was a lower
observed variance (Fig. 2). By restricting our models to the
environmental range of the subarea the discrepancies
between interpolated and extrapolated models could be
reduced, although the latter never reached the predictive
power of the strategy 1 models, maybe because the areas still
differed with regard to the frequency distributions of used
and available conditions along the variable gradients.

Differences of this kind were most pronounced for the
two most important variables climate (SNOWD) and soil
conditions (SCVAL). The latter was reflected in the model
structure, as SCVAL proved much more important in the
subarea than in the study area. SCVAL is an important
surrogate for the presence of bilberry Vaccinium myrtillus
(Braunisch and Suchant 2008), a key source of forage for
capercaillie (Storch 1993). However, soil conditions can be
partly compensated for by climate conditions, which is the
case in the southern part of the study area (Braunisch and
Suchant 2007), where capercaillie presence was under-
predicted. Omitting this biasing but nevertheless important
predictor always enlarged the areas of predicted capercaillie
presence in the south (results not shown), and partly also
reduced the qualitative differences between extrapolated and
interpolated models, but this benefit was usually linked to a
reduced overall predictive power.

Threshold selection

Converting continuous predictions into dichotomous
maps — necessary for decision making in many applied
situations — involves the risk of introducing a bias in
model predictions (Altman et al. 1994, Fielding and Bell
1997). Clues for threshold selection should be chosen
according to the conservation objectives (Wilson et al.
2005). For example, if the aim is to capture all occurrences
of rare or endangered species, irrespective of the additional
effort associated with unsuccessful sampling in unoccupied
areas, the threshold should be chosen so as to minimise
the omission error, while tolerating a high commission
error — but vice versa if the goal is to optimise the
investment of limited resources. However, as without true
absence data specificity and commission error cannot be
calculated, threshold-selection methods for presence-only
data are targeted at optimising the discrimination between



predicted presence and random. The two approaches
employed are both based on this principle but operate in
a different way: the ROC/AUC-approach compares pre-
sence locations with a representative number of 10000
random background cells (Phillips et al. 2006), which is
possible as ROC is not sensitive to prevalence, i.e.
unbalanced samples (Manel et al. 2001). Whereas sensi-
tivity (i.e. the fraction of correctly predicted presences) can
still be interpreted the classical way, the commission error
(1-specificity) now corresponds to the fraction of random
cells predicted as “presence”. The threshold that balances
the two error types thus maximises the fraction of correctly
predicted presences (sensitivity) by simultaneously mini-
mising the total area classified as “presence”. The Con-
tinuous Boyce curve, by contrast, directly compares the
area-adjusted frequency of correctly predicted presences (P)
with those expected from a random distribution (E). The
threshold is thus more intuitive in its interpretation as the
HS-value at which P/E significantly exceeds 1, which
would correspond to random prediction (cf. Hirzel et al.
2006, Supplementary material Fig. Sla). As P/E is
calculated within a moving HS-window, the curve does
not explicitly evaluate the effect of threshold-setting on
binary predictions but rather the consistency of the
continuous predictions along the HS-gradient. It therefore
facilitates a reclassification into more than two classes (for
details see Hirzel et al. 2006). However, small sample sizes
or a low predictive power can result in rugged HS-curves
with large confidence intervals which may complicate the
threshold selection. It may be worth further investigating
whether and to what extent the differences in the thresh-
olding methods affect binary model predictions and
contribute to differences between Maxent and ENFA.
Yet, we assume such effects to be negligible for our results,
as the two methods provided threshold-values in a similar
order of magnitude (results not shown), and the outcome
of the threshold-dependent and threshold-independent
evaluation were consistent between approaches (Table 2).

The comparison of Kye, and K., indicates that both
approaches led to effective predictions in the VMS-data
models (1 and 2), but contributed significantly to the poor
model performance associated with strategy 3, reducing k
by >50%. Clues for threshold selection based on the “use-
availability” pattern observed in the calibration area may
not be equally valid for the extrapolation area and can thus
cause an additional decrease in model accuracy. A similar
effect was found by Manel et al. (2001) who showed that
locally optimised thresholds can lead to erroneous predic-
tions when applied to areas that differ with regard to
species’ prevalence.

ENFA vs Maxent

ENFA and Maxent produced models with a similar degree
of accuracy when based on VMS-data (1 and 2) although
there was a consistent trend in Maxent to perform
slightly better, with the resulting maps — which were
more compact — apparently better matching the actual
capercaillie distribution. ENFA, by contrast, additionally
assigned species presence to small patches in the surround-
ing areas. Maxent models generated from the systematically
sampled data (3) performed extremely well within their

area of calibration. However, they were significanty
inferior to ENFA models when extrapolated to the whole
study area. Due to their great flexibility and accuracy in
fitting complex response functions Maxent models are
considered to be superior to envelope-based approaches
(Elith et al. 2006, Phillips et al. 2006). To limit overfitting,
regularisation functions are applied. These, however, refer
to the empirical probability distributions of species pre-
sence along the predictor gradients in the calibration area.
Consequently, regularisation may optimise the balance
between complexity and parsimony within the range of
calibration (Elith et al. 2006), but the close model-fic may
be disadvantageous when extrapolating to areas with
diverging use-availability patterns. Altering the regularisa-
tion parameters (we used the defaults) may thus be useful
to explore the potentially beneficial effects of stronger
regularisation. ENFA, in contrast, infers the HS-score of
each location from its situation relative to the species’
optimum in the environmental space (Hirzel et al. 2002).
As this is done by subdividing the environmental gradients
into equal-interval classes, calculating a locations’ distance
to the optimum from the sum of all species locations that
lie either in the same class or in any class farther apart from
the optimum, the resulting HS-curves always decrease
steadily on both sides of the optimum. This interpolation
between classes may level out spurious outliers in observed
species-habitat relations.

We could confirm no significant advantages of Maxent
when used with reduced sample sets although it performed
slightly better when predicting relative observation densi-
ties. However, sixty presence points may still be too many
to bring out differences. Hernandez et al. (2006) deter-
mined Maxent to be superior to Bioclim (Busby 1991),
Domain (Carpenter et al. 1993) and GARP (Stockwell and
Peters 1999) when reducing the sample size stepwise from
100 down to 5 records. No direct comparison with ENFA
exists as yet.

Application in species monitoring and conservation

We compared three sampling strategies that required an
approximately similar budget. The results show that
volunteer-based survey schemes (VMS) can represent a
cost-effective method of collecting species data that, due to
their high degree of representativeness, can outperform data
sampled locally and systematically when used for large-scale
species distribution models. In the case of capercaillie, this
superiority even persisted when the number of records and
the spatial resolution decreased. To achieve equally good
predictions with extrapolations based on local sampling,
more a-priori knowledge is required, ideally based on
independent evaluation data, which are mostly not available
in conservation practice. Of course, we expect an increased
number of subareas for systematic sampling, evenly distrib-
uted over the whole study area, to improve results for strategy
3-models considerably; however, this would necessitate
substantial additional funding and manpower. Nevertheless,
if the budget allows a choice between VMS-sampling and
systematic surveys covering the same extent, the latter is the
preferable option (see also Edwards et al. 2006). SDMs, in
turn, can be a powerful tool to compensate for lacking

837



or spatially biased information obtained from VMS
programmes, for instance by indicating areas where
additional sampling may be worthwhile. By predicting
relative observation densities in areas where such surveys
can just prove species presence, SDMs can support the
spatial prioritisation in conservation planning. Finally,
periodic comparisons of SDMs from different monitoring
periods enable detecting changes in species-habitat rela-
tionships, which may reveal factors responsible for popula-
tion declines. However, SDMs can only support but not
replace monitoring as their predictions — based on broad
species-environment associations — can be obliterated by
a variety of factors, such as historical factors (e.g. local
extinctions), dispersal limitations, interspecific interac-
tions (e.g. competition) or population dynamic processes
(Pulliam 2000).

Conclusions

Data used for large-scale species distribution modelling
should be sampled so as to best represent the range of
environmental conditions in the area of interest. In
presence—only models which contrast use with availability,
this includes not only species locations but also available
environmental conditions. In this context, models based on
volunteer-based monitoring data collected haphazardly
across a large, representative region can outperform models
generated from systematically sampled data from a small,
restricted subarea, as the latter models can suffer from a high
omission error when extrapolated to areas with diverging
environmental conditions and/or different “use-availability”
patterns. Converting the predicted values to a binary
(presence—absence) map involves the risk of introducing
additional errors, as the thresholds drawn from information
obtained within a restricted area may not be transferable. In
the case of a highly mobile vertebrate like capercaillie, a
reduction of the sample resolution to the scale of an
individual home range size may not necessarily lead to a
decline in model accuracy. Consequently, when restricted
financial resources require chosing between data precision
and spatial extent and representativeness of the sampling
area, the latter strategy is less prone to prediction errors and
is thus the preferable option.
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