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a  b  s  t  r  a  c  t

Assessing  the  strength  of  density  dependence  is  crucial  for  understanding  population  dynamics,  but  its
estimation  is  difficult.  Because  estimates  of population  size  and  demographic  parameters  usually  include
errors due  to imperfect  detection,  estimations  of  the  strength  of  density  dependence  will  be  biased  if
obtained  with  conventional  methods  and  lack  statistical  power  to  detect  density  dependence.  We  pro-
pose  a Bayesian  integrated  population  model  to study  density  dependence.  The  model  allows  assessing
the  effect  of  density  both  on  the  population  growth  rate  as  well  as the  demographic  parameters  while
accounting  for imperfect  detection.  We  studied  the  performance  of this  model  using simulation  and
illustrate  its  use with  data  on  red-backed  shrikes  Lanius  collurio.  Our  simulation  results  showed  that
the  strength  of  density  dependence  is  identifiable  and  it was  estimated  with  higher  precision  using
bservation error
opulation growth rate

the  integrated  population  model  than  the  conventional  regression  model.  As  expected,  the  conventional
regression  model  tended  to overestimate  density  dependence  at the  population  level  whereas  underesti-
mates  at  the  demographic  level,  but  the  bias  was  small.  The  analysis  of  the  red-backed  shrike  data  revealed
negative  density  dependence  at the  population  level  most  likely  mediated  by  a  density-dependent  decline
in adult  survival.  This  work  highlights  the  potential  of  integrated  population  models  in assessing  density
dependence  and  its  practical  application  in population  studies.
. Introduction

Factors regulating population size are broadly classified into
ensity-independent (stochastic) and density-dependent (deter-
inistic) factors (Williams et al., 2002). To better understand how

opulations are regulated, the effect of density on different age or
tage classes should be quantified. Knowledge of density depen-
ence is also crucial in practical applications such as conservation
r harvest regulations (Hanski et al., 1996; Sinclair and Pech, 1996;

rake, 2005). Many studies have used long-term time series data

o estimate the strength of density dependence (Dennis and Taper,
994; Lande et al., 2003). The main principle is to study whether
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there is a negative relationship between population growth rate
and population size. An important limitation of this approach is
that it requires a population census, i.e., a complete enumeration
without errors in the counts. If an observation error is present
and not accounted for, it inflates the type I error and mislead-
ingly indicates the presence of density dependence (Shenk et al.,
1998; Freckleton et al., 2006; Knape, 2008; Lebreton, 2009). More
recently, state-space models have been used to reduce or remove
bias in parameters or functional forms of density relationships
resulting from observation error (de Valpine and Hastings, 2002;
Jamieson and Brooks, 2004; Dennis et al., 2006). However, esti-
mates are unbiased only if the observation error is relatively small
(Knape, 2008). A further limitation is that the analysis of popula-
tion counts only reveals the effect of density at the population level
and, consequently, the demographic mechanisms causing density

dependence remain unknown.

Some studies have used long-term data to assess the impact
of density on demographic parameters by regressing estimates
of demographic parameters on population counts (Coulson et al.,
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000; Sæther et al., 2000; Barker et al., 2002; Paradis et al., 2002;
arbraud and Weimerskrich, 2003; Tavecchia et al., 2007). To get
nbiased estimates of the strength of density dependence this
pproach requires estimates of demographic rates and popula-
ion counts that are not subject to observation errors. If there are
bservation errors (either on the demographic rates and/or on the
opulation counts), the test for density dependence will suffer from

 lack of statistical power (Lebreton, 2009). Recently, Schofield et al.
2009) applied the Jolly–Seber model to mark-recapture data to
stimate the strength of density dependence on survival. Using this
odel, estimates of survival and of population sizes are obtained
hile accounting for imperfect detection, and thus the power to
etect density dependence is maximized.

Despite the development of different methods for studying den-
ity dependence, there are currently no approaches to assess the
ffect of density on all demographic parameters simultaneously
hile accounting for observation error. This is a drawback because

he full demographic mechanisms of density-dependent popula-
ion regulation cannot rigorously be studied.

Here we propose the use of a Bayesian integrated popula-
ion model to study density dependence in a coherent fashion.
ntegrated population models combine different sources of demo-
raphic data into a single model and provide estimates of all
emographic parameters and population size with improved pre-
ision and that are free of observation error (Besbeas et al., 2002;
rooks et al., 2004; Schaub et al., 2007; Abadi et al., 2010a; Kéry
nd Schaub, 2012). Parameters that are unidentifiable from a single
ource can be estimated with these models [e.g. fecundity (Besbeas
t al., 2002); immigration rate (Abadi et al., 2010b; Schaub et al.,
012)]. These models also are very appealing and powerful when
he sample size is small (Abadi et al., 2010a). A review on integrated
opulation models is provided in Schaub and Abadi (2011).

The model we propose for studying density dependence poten-
ially has several advantages. Firstly, because integrated population

odels involve the use of state-space models for the popula-
ion counts, it is possible to assess density dependence based on
stimates of population indices corrected for random observation
rrors rather than on the population counts including errors, which
voids the confounding effect of observation errors. Secondly,
ecause demographic parameters (e.g. age-specific survival, fecun-
ity) are estimated, it allows a test of density dependence for them,
nd thus the demographic mechanisms of density-dependent pop-
lation regulation can be identified. It also allows assessing density
ependence at the population level using the derived popula-
ion growth rate. Thirdly, combined analysis of demographic data
esults in improved precision of estimates, which is expected to
ncrease the statistical power to detect density dependence.

We conducted simulations to examine the performance of inte-
rated population model in estimating the strength of density
ependence under different magnitudes of observation error. We

llustrate the method using a data set on a population of red-backed
hrikes L. collurio. Previous studies have shown that the studied
hrike population is regulated by density at the level of the popula-
ion (Pasinelli et al., 2011), but that neither survival nor fecundity
as a function of local density (Schaub et al., 2011). The latter study
as performed with conventional methods (i.e., models that ignore

bservation error in population counts) which are expected to have
ower power than the integrated analysis. Here, our objective was
o evaluate whether density dependence at the level of the demo-
raphic rates could be estimable using the newly proposed model.
. Methods

We first present the integrated population model to estimate
he strength of density dependence. We  then briefly describe the
odelling 242 (2012) 1– 9

simulation procedure and the case study, and how the model is
implemented in the Bayesian framework. We  were motivated by a
short-lived bird species from which we sampled capture–recapture
and reproductive success data, as well as annual population counts.

2.1. Modelling density dependence in the integrated population
model

Integrated population models first require the formulation of
the likelihood for the available demographic data sets. Detailed dis-
cussion of this likelihood formulation is provided in Abadi et al.
(2010a). In summary, we  used the standard Cormack–Jolly–Seber
model (CJS; Lebreton et al., 1992) for the capture–recapture data.
We assumed the number of individual encounter histories summa-
rized in the m-array (m, Burnham et al., 1987) follows a multinomial
distribution with parameters that are functions of time- and age-
specific apparent survival (�ju,t , �ad,t) and recapture probabilities
(pt) where �ju,t denotes the probability that a newborn individual
survives and becomes a yearling (1 year old) from year t to t + 1
and �ad,t denotes the survival probability of yearlings and adults
(older than 1 year) from t to t + 1. We  denote the likelihood for this
model by Lcr(m|�jv, �ad, p). For the data on reproductive output, we
assumed that the annual number of offspring produced per female
(Jt) is Poisson distributed whose parameter is the product of annual
fecundity (ft) and the annual number of females recorded to pro-
duce young (Rt). Fecundity (i.e. the number of newborns per adult
females) of both yearlings and adults is assumed to be the same.
The likelihood for this model is denoted by Lrp(J, R|f).

To describe the population counts we use a state-space model,
which consists of a process and an observation model (Besbeas
et al., 2002; Abadi et al., 2010a).  The process model describes the
evolution of the underlying population sizes over time, thus it
determines the link between the demographic rates and popula-
tion size. Let N1,t denote the number of 1 year old individuals in
year t, N2+,t denote the number of individuals older than 1 year in
year t, and Nt = N1,t + N2+,t, denote the total population size in year
t. We  assume that N1,t+1 is generated by a Poisson process with rate
parameter based on the product of fecundity, juvenile survival and
total population size in year t. The sex ratio of newborn is assumed
to be even and therefore we divide f by 2, and thus,

N1,t+1∼Po
(

Nt

(
ft
2

)
�jv,t

)
(1)

We further assume that N2+,t+1 is generated by a binomial pro-
cess as

N2+,t+1∼Bin(Nt, �ad,t) (2)

The observation model links the population counts (i.e. the num-
ber of detected and counted female breeders, denoted by yt) to the
latent total population sizes (Nt). We  then assume

yt∼N(Nt, �2
y ) (3)

where the variance �2
y quantifies the observation error. The

likelihood for the state-space model is given by the prod-
uct of the likelihood of the process and observation models,
Lsy(N|�jv, �ad, f ) × Lob(y|N, �2

y). The likelihood of the integrated
population model is then obtained as the product of the likelihoods
of all three data sources under the assumption of independence as

Ljoint(m, J, R, y|�jv, �ad, f , p, N, �2
y) = Lcr(m|�jv, �ad, p) × Lrp(J, R|f )

× Lob(y|N, �2
y) × Lsy(N|�jv, �ad, f ) (4)
A simulation study by Abadi et al. (2010a) that combined and
analyzed completely dependent data of capture–recapture, popu-
lation counts, and reproductive success showed that the violation
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f the independence assumption only had a negligible effect on the
recision of parameter estimates. We  assume that this is true also

n the present study.
All demographic parameters and population sizes appear in the

ikelihood of the integrated models as shown in Eq. (4).  This allows
he possibility to model density dependence of the demographic
ates within a single model. We  modelled the effect of density on
oth survival probabilities and fecundity as follows.

og it(�jv,t) = ˇ0 + ˇ1N∗
t + ε�jv,t

ε�jv,t
∼N(0,  �2

�jv
) (5)

og it(�ad,t) = ˇ2 + ˇ3N∗
t + ε�ad,t

ε�ad,t
∼N(0,  �2

�ad
) (6)

og( ft) = ˇ4 + ˇ5N∗
t + εft εft ∼N(0,  �2

f ) (7)

here N∗
t is the standardized population size (i.e., N∗

t = (Nt −
ean(Nt))/sd(Nt)), Nt = N1,t + N2+,t is the population size in year t,

nd the �2 are the temporal variances of the demographic param-
ters. The slope coefficients (ˇ1, ˇ3, ˇ5) estimate the strength of
ensity dependence on juvenile survival, adult survival and fecun-
ity, respectively. For the recapture probability, which is a nuisance
arameter, we assumed a random year effect, thus log it(pt) =

 + εpt with εpt ∼N(0,  �2
p ) where �2

p is the temporal variability of
ecapture. The goal is to estimate the regression coefficients (�, ˇ)
nd the magnitude of temporal variances (�2).

We also estimated the strength of density dependence on the
opulation growth rate (i.e. at the level of the population). This was
one by first calculating the population growth rate (�t = Nt+1/Nt),
nd then regressing the growth rate on population size as

og(�t) = ˇ6 + ˇ7N∗
t + ε�t

ε�t
∼N(0,  �2

�) (8)

We calculated this regression outside the integrated popula-
ion model, because we did not want to induce any constraints
n the density dependence at the population level, since density
ependence at the population level is always the result of density-
ependent variation of demographic rates.

We  also estimated the strength of density dependence, ignoring
he observation error, by regressing demographic rates esti-

ated with single data analysis (i.e. survival probabilities from
apture–recapture data estimated with the CJS model and fecun-
ity estimated from data on reproductive success with a Poisson
egression model) on standardized population counts. The rela-
ionships between demographic parameters and population counts
ere similar with Eqs. (5)–(8),  but here we used the population

ounts y∗
t rather than N∗

t and the population growth rate was  cal-
ulated as �obs,t = yt+1/yt and modelled as a function of y∗

t .

.2. Simulation study

.2.1. Individual-based simulation of the data
The way we conducted simulations is analogous to that

escribed in Abadi et al. (2010a). It consists of creating a popu-
ation by simulating fates of individuals, sampling demographic
ata from this population, and analysing these data with the devel-
ped integrated population model. These steps are repeated several
imes and point estimates stored, serving the base to evaluate the
erformance of the model.

To create the population, we mimic  a short-lived bird species
nd the development of the population sizes from one year to
nother is described by Eqs. (1) and (2).  We  specified the relation-
hip between demographic parameters and the actual population
ize in year t as

og it(� ) = 0 − 0.05N + ε ε ∼N(0,  (0.15)2) (9)
jv,t t �jvt �jvt

og it(�ad,t) = 1.735 − 0.02Nt + ε�adt
ε�adt

∼N(0,  (0.20)2) (10)

og(ft) = 1.386 − 0.01Nt + εft εft ∼N(0,  (0.10)2) (11)
odelling 242 (2012) 1– 9 3

The simulation parameters in Eqs. (9)–(11) were chosen in such
a way that they result in reasonable demographic rates for a short
lived bird species at the population size of about 50.

Next, we  created the life history of individuals in the population
for 20 years. To start the creation of the population, we  set the ini-
tial population size at 40 individuals. We  then specified the actual
probabilities of survival and fecundity applying Eqs. (9)–(11) under
consideration of the actual population size. For each individual alive
in the population it was  then simulated whether it survived for
another year, how many juveniles it produced, and how many of
the juveniles survived. The sum of the number of yearlings and sur-
viving adults gives then the population size in the following year,
and we specified the demographic rates for this following year. This
was repeated for 20 years. Information about the state of an indi-
vidual (dead, alive, in which age group it is given alive) and the
number of offspring it has produced were stored. To avoid transi-
tion effects of the initial conditions we only used the last 10 years
of the simulated data sets.

Once we created the population, the next step was to sample
individuals for the different studies. We  independently selected
1000 individuals at random from the population to be available for
capture–recapture and reproductive success data sampling. To cre-
ate the capture–recapture histories and reproductive success data
based on individuals subject to each study, we  set the initial cap-
ture probability at 0.90 and 0.50 for juveniles and adults (1 year and
older), respectively, and the recapture probability at 0.50. The prob-
ability to detect and record reproductive success was  set at 0.90. All
these capture/recapture and detection probabilities were assumed
to be constant across time. To create the population counts in each
year, we used a binomial distribution with parameters actual pop-
ulation size in the given year (Nt) and detection probability (Ps).
The detection probability was assumed to be constant over time.
We considered two  scenarios, one with detection probabilities of
female breeders of 0.50, and one with 0.90. The lower detection
probability corresponds to a large observation error in the popula-
tion counts. This is because the variance of binomial sampling (i.e.
NPs(1 − Ps)) is largest with Ps = 0.50. Our sampling procedures did
not result in completely independent data sets as some individu-
als that were involved in either capture–recapture or reproductive
success data sampling also had a chance to be included in the popu-
lation counts. We  simulated 500 data sets and analyzed them using
the proposed integrated population models and conventional mod-
els. We  then assessed the identifiability of the density-dependence
parameters by comparing the posterior means obtained from the
integrated as well as conventional models with their correspond-
ing prior distributions (Gimenez et al., 2009). We  also assessed the
precision of the estimates of density dependence at varying levels
of observation error in population counts.

2.3. Case study

We  used 26 years of demographic data (capture–recapture
data and data on reproductive success) as well as population
counts of red-backed shrikes collected from 1981 to 2006 in south-
western Germany near Göppingen (48◦39′N, 9◦47′E) to illustrate
the method. The red-backed shrike is a medium-sized (∼30 g)
migratory passerine living in agricultural landscapes during the
breeding season (Glutz von Blotzheim and Bauer, 1993). Detailed
descriptions of the study and data are provided in Schaub et al.
(2011). The population size varied between 35 and 71 breeding
pairs during the study period and we  monitored the fate of 1154
broods. 513 adult females and 1799 fledged females were colour

ringed, of which 126 and 63, respectively, were resighted at least
once in a later year in the study area. The goal was to estimate the
strength of density dependence at the population level and of the
demographic rates of females to assess (1) whether the population
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Fig. 1. Density plots of 500 estimated posterior means of strength of density dependence on juvenile survival (�jv , i.e. ˇ1), adult survival (�ad , i.e. ˇ3), fecundity (f , i.e. ˇ5)
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s regulated by density, and (2) if so, through which demographic
echanisms.
Because the studied red-backed shrike population is geograph-

cally open, we had to extend the integrated population model to
nclude immigration (Abadi et al., 2010b). Therefore, we modified
he state-space model (Eqs. (1)–(3))  as follows: the number of 1
ear old individuals N1,t+1 followed a Poisson process with

1,t+1∼Po
(

Nt

(
ft
2

)
�jv,t

)
(12)

The number of immigrants Nim,t+1 was modelled with a Poisson
istribution as

im,t+1∼Po(Ntωt) (13)

here the immigration rate ωt is defined as the number of female
mmigrants of age 1 year or older in year t + 1 per breeding females
n the previous year Nt.

The number of at least 2 years old surviving individuals followed
 binomial process with
ad,t+1∼Bin(Nt, �ad,t) (14)

nd the total number of individuals in year t is given by Nt = N1,t +
ad,t + Nim,t .
 line), and from single data analysis ignoring observation error (dashed line) when
eeders = 0.50). Vertical lines are the means of the estimated posterior means of the

 the ˇ.

For the observation equation, we assumed a normal distribution,
hence yt, the annual number of counted breeding females in year t,
distributed as a N(Nt, �2

y ).
To estimate the strength of density dependence on the demo-

graphic parameters as well as the population growth rate, we
fitted the models specified in Eqs. (5)–(8).  We  also modelled immi-
gration rate with a random year parameter, but did not impose
density dependence on it for identifiability reasons. Further, the
recapture probability (p) was  modelled time dependent where
time was treated as random. A model without density depen-
dence (i.e. ˇ1 = ˇ3 = ˇ5 = 0 in Eqs. (5)–(7))  was also fitted to get
unconstrained annual estimates of the demographic parameters.
To assess the identifiability of the density-dependence parameters
we performed a prior sensitivity analysis.

2.4. Bayesian analysis of the model

All the models were fitted within the Bayesian framework,
specifying non-informative priors for the parameters. Specifically,

we assigned a Normal distribution truncated between −5 and
5 (N(0,100)I(−5,5)) for the regression coefficients (  ̨ and ˇ). A
Normal distribution truncated to positive values (N(30,100)I(0,))
was assigned for age-specific initial population sizes, and a
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Fig. 2. Density plots of 500 estimated posterior means of strength of density dependence on juvenile survival (�jv , i.e. ˇ1), adult survival (�ad , i.e. ˇ3), fecundity (f ,  i.e. ˇ5)
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niform (U(0,10)) distribution for the temporal standard devia-
ions of demographic parameters. To assess convergence for the
imulated data sets, we  randomly chose a single simulated data set
nd ran three chains, each with different initial values, of 20,000
terations with a burn-in of 15,000 iterations. The R̂ (Brooks and
elman, 1998) values were less than 1.1 for all parameters, sug-
esting convergence. We  then ran a single chain of 30,000 MCMC
terations with a burn-in of 20,000 thinning every 10th observation
o compute the posterior summary statistics for all 500 simulations.
or the case study, in addition to the non-informative priors for
he density-dependence parameters defined above, we used three
riors that are fairly informative (N(0,1), N(0.1,1), and N(−0.1,1))
o assess the sensitivity of the posterior estimates. Convergence
as achieved after running three chains of 20,000 iterations with

 burn-in of 10,000 (all the R̂ values <1.02). We  then ran a single
hain of length 100,000, discarded the first 50,000 as burn-in and
hinned every 10th observation. The MC  errors for all parameters
ere less than 5% of the corresponding posterior standard devia-
ions, indicating the accuracy of the posterior estimates for each
arameter. We  used the R software version 2.9.1 (R Development
ore Team, 2008) to simulate the data and the analyses were
one using the WinBUGS software calling it from R through the
 line), and from single data analysis ignoring observation error (dashed line) when
eeders = 0.90). Vertical lines are the means of the estimated posterior means of the
f the ˇ.

package R2WinBUGS (Sturtz et al., 2005). The R and WinBUGS codes
to analyze the red-backed shrike data are provided in the electronic
supplement (Appendix B).

3. Results

3.1. Simulation study

Our simulation study clearly showed that the strength of density
dependence in the demographic rates as well as in the popula-
tion growth rate was  identifiable with the integrated population
model regardless of the magnitudes of observation error we  con-
sidered, indicated by smooth posterior densities with a clear peak
(Figs. 1 and 2). If the parameters were not identifiable, we  would
have expected a posterior density similar to the specified prior
distribution (Gimenez et al., 2009). The widths of the posterior
densities resulting from the integrated population model were nar-
rower when the observation error was  small compared to when

it was large. This indicates that the precision of the density-
dependence estimator declined with increasing observation error
of the population counts. In general, the strength of density depen-
dence was  estimated with more precision at the population level
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open  circles) with 95% credible intervals (vertical dashed line) obtained from an in
elationship between demographic parameters as well as population growth rate
ensity dependence (solid line).

han at the demographic level, indicated by a narrow width of the
osterior densities (Figs. 1 and 2).

Estimates of the strength of density dependence obtained from
he integrated population model were generally more precise com-
ared to that of the regression analysis. This was particularly
vident for adult survival (Figs. 1 and 2). As expected, the estimates
f strength of density dependence in the demographic parame-
ers were slightly shifted towards zero when the observation error
as large and not accounted for. However, this effect was  not very

trong. The model ignoring the observation error yielded stronger
nd slightly less precise estimates of density dependence at the
opulation level in comparison to the integrated population model
Figs. 1 and 2). Our simulation results also showed both the inte-
rated population and conventional models yielded only a small
ias of the estimated strength of density dependence within the
ange between −0.038 and 0.015.

.2. Case study

Since there is no established goodness-of-fit test of the inte-
rated population model available, we tested the goodness-of-fit
ust for the capture–recapture model using contingency tables

Pradel et al., 2005) via program U-CARE (Choquet et al., 2009):
here was no sign of lack of fit (�2

59 = 42.75, P = 0.94). Based on
he integrated population model without imposing density depen-
ence, the annual estimates of age-specific survival, fecundity
ed population model without density dependence, along with the estimated linear
tandardized population size obtained from an integrated population model with

and population growth rate tended to decline with increasing
population size in red-backed shrikes (Fig. 3), suggesting density
dependence in these demographic parameters and at the popu-
lation level. We  then explicitly estimated the strength of density
dependence in the demographic parameters and in the population
growth rate using the integrated population model. The estimated
linear relationships between demographic rates as well as popu-
lation growth rate (on the transformed scale) and population size
are shown in Fig. 3. Our analyses revealed that the mean annual
juvenile and adult survival probabilities of red-backed shrikes
females were 0.05 (sd = 0.01) and 0.39 (sd = 0.02), respectively.
Mean fecundity was  2.84 (sd = 0.13) and the mean immigration
rate was  estimated to be 0.55 (sd = 0.04). The posterior distribu-
tions of the strength of density dependence were wide for juvenile
and adult survival, and more peaked for fecundity and population
growth. As expected, the posterior means of the strengths of density
dependence were negative in all parameters (Fig. 4). The posterior
probability that the estimated effect of density were negative was
high for population growth (0.96), followed by adult survival (0.79),
fecundity (0.60), and juvenile survival (0.56). Thus, there was  clear
evidence of a density-dependent population regulation at the level
of the population that was more likely due to adult survival, than

due to juvenile survival or fecundity. The prior sensitivity analysis
showed that the posteriors of the density-dependence parame-
ters were nearly identical under different priors (non-informative
and informative, Fig. A.1, Appendix A). Hence, posterior estimates
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ata.

. Discussion

Density dependence is an important ecological concept and
nderstanding how it operates is crucial in conservation, harvest-

ng and for accurate demographic projections (Sinclair and Pech,
996; Lande et al., 2003). In this paper we provide a framework for
tudying density dependence using a Bayesian integrated popula-
ion model. A key advantage of this unifying framework is that it
llows estimating the strength of density dependence both at the
emographic and population level while accounting for observa-
ion error and, consequently, the demographic mechanism causing
ensity-dependent population regulation can be identified. In con-
rast, most existing techniques for testing density dependence rely
n time series data and do not account for observation error, or
ocus either on the effect of density on population growth rate or
n a single demographic parameter only.

Using simulations, we showed that integrated population
odels provide estimates of the effect of population size on demo-

raphic parameters as well as on population growth rate with
ood precision. The parameters estimating the strength of den-
ity dependence were identifiable with our model regardless of the
agnitudes of observation error we considered. As expected, the

stimates were slightly more precise when the observation error
as small than large. Our simulation study also highlight that ignor-

ng observation error had differential impact on the estimators of
he strength of density dependence at the population than at the
emographic level. The conventional regression model tended to
stimate stronger density dependence at the population than at the
emographic level. These results are in agreement with previous
ndings (e.g. Shenk et al., 1998; Freckleton et al., 2006; Lebreton,
009). Interestingly, our simulation study showed that the conven-

ional regression model provided nearly the same point estimates
f the strength of density dependence at the demographic level as
he integrated population model regardless of the magnitude of the
bservation error. Both models estimated the strength of density
odelling 242 (2012) 1– 9 7

dependence with small bias only. This suggested that the con-
ventional regression model to estimate density dependence was
robust, and the main advantage of the integrated population model
was increased power to detect effects.

We also illustrated the application of the method using
demographic data from a geographically open red-backed shrike
population. We found strong support of density dependence
for the population growth rate. Of the considered demographic
parameters, only adult survival was likely to be regulated by
density dependence, while juvenile survival and fecundity were
hardly impacted by breeding density. Our prior sensitivity analy-
sis showed the posterior distributions of the strength of density
dependence were highly dominated by the data and little sensi-
tive to the choice of the priors. This was a further indication that
the strength of density dependence was an identifiable parameter
in the integrated population model. Using the same data analyzed
with regression analyses with population counts uncorrected for
observation error, Schaub et al. (2011) did not find support of
density dependence for survival and fecundity. With the appli-
cation of the integrated population model the power to detect
density dependence increases (see simulations), which is the rea-
son why  we  now found support of density dependence operating
on adult survival. One may  wonder how there can be strong density
dependence for population growth and only relatively weak den-
sity dependence for the demographic rates. First, even if density
dependence for the demographic rates is weak, all demographic
rates work jointly, and thus the effect at the population level mag-
nifies. Second, the red-backed shrike population is geographically
open, and immigration is substantial (mean (sd): 0.55 (0.04)). It
is well possible that immigration is regulated by density, i.e., few
individuals immigrate in years where the number of survivors and
local recruits is high, and vice versa. Yet, immigration is a param-
eter in our integrated population model that is estimated without
having observed data (Abadi et al., 2010b)  and a simulation study
needs to be done to assess whether the strength of density depen-
dence for parameter for which no explicit data are available, can be
estimated. To evaluate for which demographic parameter density
dependence is important, we  computed the probability that the
strength of density dependence is negative and use this as a test-
ing criterion. Alternatively, one could also apply model selection
for the same purpose. The set of models could then include models
that impose density dependence in some demographic parameters
only. Yet, model selection in Bayesian hierarchical models is not an
easy task (Link and Barker, 2004; Millar, 2009).

In our simulation as well as in the case study we  expressed den-
sity in terms of population size. Since the study area associated
with the red-backed shrike population remained the same over
time, the use of population size as a measure of density was  justi-
fied. However, it is important to note that the influence of density
on biological processes can be overlooked due to an inappropri-
ate measure of density (Barker et al., 2002; Williams et al., 2002).
Moreover, the main driving force for density dependence is often
competition for resources and not space. Ideally, one would there-
fore model the strength of density dependence not with population
size, but with the available resources per individual. Our model
could be extended in this way if an estimate of resource availability
could be obtained.

The goals of our simulation were mainly on the assessment of
the identifiability of the estimates of strength of density depen-
dence and on the evaluation of the effect of observation error. We
specified a short study period (i.e., 10 years), thus conditions where
the estimation of density dependence were difficult. Yet, the model

was able to estimate density dependence with good precision in
this set up. We  could further examine the performance of the model
in different directions. For instance, we could set up a simulation
varying the strength of density dependence and also the length of
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he study period. The ability to detect density dependence usually
ncreases with long time series data (Brook and Bradshaw, 2006)
nd a large change in density. In our simulation study, we focused
n the common kind of observation error (i.e. non-detection or
alse-negative error). One might further evaluate the performance
f the model considering other kinds of observation error such as
alse-positive errors occur.

The integrated population model is very flexible to include
ifferent shapes of density-dependence. Here we used the density-
ependence model of the Ricker type for population growth
ate (Dennis and Taper, 1994), but specifying other density-
ependence models which are discussed in the literature (Dennis
nd Taper, 1994; Jamieson and Brooks, 2004) is straightfor-
ard. Moreover, some studies have shown that the effect can

e non-linear in the parameters (Paradis et al., 1998; Sæther
nd Engen, 2002; Tavecchia et al., 2007). The integrated popula-
ion model could also be extended to assess non-linear density
ependence, for instance by using penalized splines (Gimenez
t al., 2006) or thresholds (Besbeas and Morgan, 2011). In the
resent study, we looked at the direct effect of density but it is

ossible that density dependence can affect demographic param-
ters and population growth rate with time lag (Paradis et al.,
002). Our model can easily be extended to study delayed density
ependence.
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Overall, our model provides an improved statistical tool
over current methods for estimating density dependence. We
believe it has great potential in conservation, management and
ecology.
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