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Along with plant species composition forest structural complexity is an important determinant of forest
biodiversity, but difficult to predict in space from field data. We analyzed forest structural complexity
based on a comprehensive set of variables derived from nationally available, area-wide remote sensing,
particularly LiDAR data. We generated variables related to vertical and horizontal structural heterogene-
ity, as well as site factors potentially indicating the abundance of weakened trees or snags. We used them
to predict the occurrence of four bird species with narrow and complementary structural habitat require-
ments, together being indicative of structurally diverse forests. Presence/absence data of Capercaillie
(Tetrao urogallus), Hazel Grouse (Bonasa bonasia), Three-toed Woodpecker (Picoides tridactylus) and
Pygmy Owl (Glaucidium passerinum) from three biogeographic mountain regions in Switzerland were
used to calibrate species distribution models (boosted regression trees BRT) for each species individually,
as well as for the sympatric occurrence of at least three of the four target species. The predictive devi-
ances explained (D2) and the AUC values obtained from cross-validation ranged from 15.5% to 63.1%
and 0.77% to 0.97% respectively. Sympatric species occurrence reflecting overall forest structural com-
plexity was predicted best, with an outstanding accuracy. To support management and monitoring
schemes we identified variable threshold effects based on partial dependence plots. Variables related
to vertical foliage distributions were most important, followed by horizontal structural attributes such
as canopy height variations, forest edges and gaps. Site factors such as topographic position improved
all models and were most important for the species depending on weakened trees and dead wood. We
conclude that recent advances in remote sensing allow for large-scale determination of forest structural
characteristics suitable for developing species and habitat distribution models of considerable generality,
while keeping an unprecedented level of detail. Our approach allows forest managers to amend regional
and countrywide management plans with reliable maps depicting areas of high forest structural com-
plexity and habitat quality, which will facilitate the integration of conservation-relevant information into
multifunctional forestry.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Maintaining structural complexity is an important need to halt
ecosystem simplification and the loss of biodiversity in managed
temperate forests (Franklin, 1988; Hunter, 1999). Quantifying for-
est structure to better understand biodiversity patterns and to sup-
port multifunctional forest management is thus a fundamental
task to conserve biological diversity (Lindenmayer et al., 2000).
Forest structure is generally described with measures of the
vertical and horizontal distribution of forest vegetation elements
(Franklin et al., 2002). More specifically, several combinations of
structural attributes related to variation in foliage arrangement,
canopy cover, tree diameter, tree height, tree spacing, tree species,
stand biomass, understory vegetation, and deadwood have been
proposed as indices of forest structural complexity at the stand
scale (McElhinny et al., 2005). A broad range of structural attri-
butes is expected to promote the abundance and diversity of spe-
cies by creating a large variety of ecological niches, themselves
providing cover, nutrition and breeding sites for many species
and individuals (MacArthur, 1958; Hunter, 1999).

Measures of structural complexity are traditionally derived
from field data, however, gathering such data is labor-intensive
and usually limited to sample plots. Thus, area-wide predictions
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are not feasible and consistency issues often confine integrating
data across multiple regions. Recent developments in remote sens-
ing, such as the emergence of national LiDAR (Light Detection And
Ranging) datasets, provide alternative ways to consistently quan-
tify forest and habitat structures across large areas at an unprece-
dented level of detail (Lefsky et al., 2002; Hyyppä et al., 2008).
There is a growing body of literature describing the application
of LiDAR-derived variables of forest structure to explain animal–
habitat relationships (Bradbury et al., 2005; Vierling et al., 2008).
Based on the foliage height diversity (FHD) concept, which was
proposed by MacArthur and MacArthur (1961) to show that bird
species diversity is positively associated with the vertical distribu-
tion of foliage among the forest vegetation layers, direct LiDAR
measurements representing the vertical complexity of canopy ele-
ments, for example, explained the multi-year prevalence of a Neo-
tropical bird species (Goetz et al., 2010). LiDAR metrics of
vegetation height, density or volume as well as variables based
on single tree crowns have been found to be good predictors of
species distributions and habitat suitability (Hill et al., 2004; Seavy
et al., 2009; Swatantran et al., 2012) and were identified as indica-
tors of avian species diversity (e.g. Goetz et al., 2007; Lesak et al.,
2011). LiDAR variables of canopy height variation and light avail-
ability in the lower forest strata also performed well in predicting
the distribution and assemblages of arthropods (Müller and Brandl,
2009; Vierling et al., 2011), and explained the occurrence and
activity of bats (Jung et al., 2012). To complement direct variables
of forest structure, a number of studies included topography-re-
lated variables and combined LiDAR data with radar and multi-
spectral satellite data, such as variations of the normalized
difference vegetation index (NDVI) (e.g. Goetz et al., 2010; Swatan-
tran et al., 2012).

Most studies using airborne-LiDAR data to explain species-
habitat relationships employed relatively high-resolution data
for both the dependent and independent variables (e.g. point
counts and/or plot areas ranging from 100 s to 10,000 s of m2)
across relatively small spatial extents (e.g. national parks or for-
est reserves). Thus, their level of precision comes at the cost of
decreased generality, which is a major concern in forest and
predictive habitat distribution modeling (Guisan and Zimmer-
mann, 2000). The potential of LiDAR to optimize the trade-off
between precision and generality based on landscape-level anal-
ysis of forest structural complexity and habitat quality across
larger plot areas (e.g. km2) and extents (e.g. several biogeo-
graphic regions) has remained largely unexplored. At the land-
scape level, structure-based indicators representing between-
stand heterogeneity, structural complexity, or structural
variation patterns caused by disturbance (e.g. from wind, snow,
fire, insects) are considered relevant biodiversity surrogates, but
difficult to measure in the field (Lindenmayer et al., 2000).
Methods and metrics utilizing national LiDAR data may provide
a promising route to quantifying such forest landscape charac-
teristics and build habitat and species distribution models of
considerable generality.

In a biodiversity conservation context, an ideal suite of vari-
ables representing structural complexity needs to reflect ob-
served relationships with faunal diversity. While a number of
studies used LiDAR-derived variables of forest structure to
examine patterns of avian, mostly passerine diversity, the per-
formance of such variables to predict the sympatric occurrence
of bird species with specific, well-known and complementary
structural requirements has not been analyzed so far. Such pre-
dictors may comprehensively represent forest structural com-
plexity and cover a large breadth of species, providing that
the target species complement each other in terms of their spe-
cialization to different structural characteristics, forest succes-
sional stages, trophic levels and resource requirements.
We studied four rare and sedentary mountain bird species
meeting the above criteria: Capercaillie (Tetrao urogallus), Hazel
Grouse (Bonasa bonasia), Three-toed Woodpecker (Picoides tri-
dactylus) and Pygmy Owl (Glaucidium passerinum). Capercaillie is
a large forest grouse usually found in structurally rich, semi-open
coniferous old-growth (Bollmann et al., 2005). It is considered an
umbrella species for the autochthonous montane and subalpine
forest species communities (Suter et al., 2002; Pakkala et al.,
2003) and has considerable spatial requirements with home range
sizes ranging from 100 to 1000 ha (Storch, 1995). Hazel Grouse
inhabits early succession stages with pioneer plant communities
as well as small rejuvenation areas embedded in old-growth for-
ests, with territories typically ranging from 10 to 40 ha (Bergmann
et al., 1996; Schäublin and Bollmann, 2011). Given the Capercaille’s
and Hazel Grouse’s narrow structural habitat requirements, we ex-
pect heterogeneity in vertical and horizontal forest structure to be
an important determinant of their habitat qualities.

The insectivorous Three-toed Woodpecker has been proposed
as an indicator species of structurally rich coniferous forests with
old-growths attributes such as substantial volumes of dead wood,
an important resource of forest biodiversity in general (Bütler
et al., 2004; Roberge and Angelstam, 2006). Local disturbances
and low productivity sites rendering the required snags and weak-
ened trees thus form optimal habitats. Three-toed Woodpeckers
have a home range size of ca. 100 ha and are considered a keystone
species supplying forest stands with tree-cavities that serve sec-
ondary users as nesting or roosting holes (Pechacek and d’Oleire-
Oltmanns, 2004). Pygmy Owls are secondary cavity nesters and oc-
cupy territories of a few hundred hectares. They depend on key
habitat structures such as abundant old trees or snags providing
hollows for nesting and fodder storage or interior edges to opti-
mize hunting for their prey, mostly small birds and mammals
(Glutz von Blotzheim, 1980; Strom and Sonerud, 2001). Along with
heterogeneity of vertical and horizontal structure, we expect site
factors affecting the abundance of weakened trees and snags, such
as topography, to have a comparably strong effect on the habitat
quality for these two species.

The aim of this study is to evaluate the potential of nationally
available remote sensing data, particularly LiDAR, for the assess-
ment of forest structural complexity on the landscape level across
a broad range of mountain forest conditions. Our objectives were:
(1) to derive a set of variables representing the complexity of ver-
tical and horizontal forest structure and complement it with vari-
ables of vegetation density and topographic site factors, (2) test the
capacity of these variables to predict the occurrence of each of the
four target bird species as well as (3) the sympatric occurrence of
at least three of these species, representing overall structural
complexity.
2. Material and methods

2.1. Study area

This study was carried out in three biogeographic mountain re-
gions covering 21,620 km2 of Switzerland: the Swiss Jura, the
Northern Prealps and the Eastern Central Alps (Fig. 1a). These re-
gions represent mountain forest ecosystems from low to high ele-
vations and comprise a broad range of the ecological niches
realized by the study species, which is expected to improve the
generality of the results (Graf et al., 2006). The general landscape
composition in all three regions is characterized by forests, pasture
grasslands, settlements and unproductive areas, such as bare rock.

In the Swiss Jura, elevations do not reach the tree-line and for-
ests form semi-continuous habitats interrupted by pasture grass-
lands. In the Northern Prealps, the upper natural tree-line lies at



Fig. 1. Study area and sampling design. The study area (a) consists of three biogeographic mountain regions in Switzerland: Jura (1), Northern Prealps (2) and Central Eastern
Alps (3). Dots indicate species presence (white) and absence (black) cells. The map (swisstopo, 2012) extract in (b) shows the sampling design including the km2 reference
grid and a presence (white frame) and an absence (black frame) sampling cell with forest cover and rivers in gray.
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about 1800 m above sea level (m a.s.l.) and mountain tops with
elevations around 3000 m a.s.l. occasionally disrupt the potential
natural forest cover. The climatic conditions in the Jura and North-
ern Prealps are mostly oceanic with cold-temperate winters, wet
summer months and precipitations rates from 2000 to
3000 mm yr�1. The natural tree species composition varies along
the altitudinal gradient, with European beech (Fagus sylvatica)
and silver fir (Abies alba) dominating the montane altitudinal belt,
while Norway spruce (Picea abies) and mountain pine (Pinus mugo)
are dominant in the subalpine belt. The Eastern Central Alps are
characterized by high relief over short distances, with mountains
reaching elevations of up to 4000 m a.s.l. The forests in this region
occur in belts around mountain ranges, and the upper tree-line is
at ca 2300 m a.s.l. This region has a continental climate with cold
winters, warm and dry summers and precipitation rates from
800 to 2000 mm yr�1. Compared to Jura and Northern Prealps, a
larger proportion of larch (Larix decidua) and Swiss stone pine (Pi-
nus cembra) makes out the tree species composition in the Eastern
Central Alps.
2.2. Species data and study design

We compared used versus unused habitat based on a paired
species presence/absence approach. The pairs of cells with species
presence and absence were delineated using a national reference
grid with a cell size of 1 km2 (Fig. 1b).

Species presence data included multi-year species evidence ta-
ken from the database of the Swiss Ornithological Institute and the
grouse database of the Swiss Federal Research Institute WSL. Spe-
cies specialists and qualified ornithologists reported direct (i.e.
sightings) and indirect (i.e. feathers and/or droppings) evidence,
which were validated by experts from the Swiss Ornithological
Institute and the WSL, and allocated to the respective km2 cell.
Presence cell selection was restricted to cells with at least three
years of observation between 2006 and 2010. We applied a strati-
fied random sampling design to select the presence cells. In each
study region, the presence cells represent the altitudinal gradient
and the distribution range of each species. The 1-km2-resolution
approximates the home range size of the study species, which is
generally recommended for studying species–habitat
relationships.

We defined pseudo-absence cells (from now on referred to as
absence cells) as cells with no reported species evidence between
2000 and 2010. Because our aim was to study only forest-domi-
nated landscapes, we restricted our analysis to cells with more
than 50% forest cover, as delineated by the digital mapping product
Vector25 (swisstopo, 2012). Pairs of presence and absence cells
were located in the same valley within dispersal distance, in our
case set to a maximum of 4 km. Thereby, we accounted for the
underlying idea that absence cells could potentially be used by
the species but are unused due to suboptimal habitat characteris-
tics. Considering the two criteria above, we randomly selected an
absence cell at least one but not more than three grid cells apart
from a particular presence cell, whereas the closest potential ab-
sence cell was prioritized (Fig. 1b).

Our sample sizes for the analysis amounted to 51 pairs (n = 102)
for Capercaillie, 73 pairs (n = 146) for Hazel Grouse, 61 pairs
(n = 122) for Three-toed Woodpecker, 56 pairs (n = 112) for Pymgy
Owl and 40 pairs (n = 80) for sympatric occurrence of at least three
species. We chose the occurrence of at least three species to repre-
sent sympatric occurrence because the sample size for simulta-
neous occurrence of all four species would have been too small
for the analysis (11 pairs). The numbers of species presence within
the sympatric occurrence pairs were 27 for Capercaillie, 37 for Ha-
zel Grouse, 35 for Three-toed Woodpecker and 31 for Pygmy Owl,
and all possible species combinations were evenly represented.
2.3. Predictor variables

2.3.1. LiDAR data
We derived 23 variables from a nationally available first and

last return LiDAR dataset acquired at a nominal footprint size in
the range of small-footprint laser scanning (i.e. several decime-
tres). The mean point density for our sampled areas was 1.4 m�2

and the standard deviation of height accuracy was 1.5 m in for-
ested areas, as reported by the data provider. Data was delivered
in the form of classified point clouds for the digital terrain model
(DTM) and the digital surface model (DSM) (swisstopo, 2011).
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Vertical complexity – to account for the species’ preferences with
respect to vertical foliage distributions we used the terrain cor-
rected vegetation point cloud (heights of laser echoes in DSM
minus interpolated DTM heights) to derive height quartiles in the
form of a multi-layer raster grid (Fig. 2). We calculated the mul-
ti-layer raster based on a 50 � 50 m pixel grid, with the vegetation
heights in each pixel box being subdivided into 4 layers, indicating
the quartiles. For each km2 cell, we computed the mean quartile
heights and the standard deviation (SD) thereof, over all pixel
boxes. The SD of the four quartile heights were included separately
in the set of predictor variables (Table 1). They measure how
evenly the vegetation heights are distributed within each km2 cell
and thus represent spatial variability of vertical structure. Mature
or old-growth forests with a continuously rich vertical structure
promoted by periodical natural disturbance are therefore expected
to exhibit smaller standard deviations of the quartile heights than
forest landscapes showing distinctive patterns of stand level man-
agement (Fig. 2).

To complement our measurements of vertical structure we
developed a single index for multi-storied forest profiles. For this
purpose we used the mean quartile heights to calculate the range
(in meters) between the second and third mean quartile height and
divided it by the fourth mean quartile height (Table 1).
Fig. 2. Terrain corrected vegetation heights for 2 km2 sampling cells with
contrasting vertical distribution profiles shown along two 500 m � 50 m transect
bars located in each cell (emphasized black lines). The km2 sampling cells were
gridded with a 50 m � 50 m raster and the vegetation heights (xyz-coordinates of
laser returns) in each pixel box were used to calculate the height quartiles. The
vegetation heights in (a) are distributed comparably evenly and continuously
among the pixel boxes, whereas the profile shown in (b) is characterized by
vertically homogeneous stands in different development stages and heights,
resulting in a high standard deviation of quartile heights between the pixel boxes.
Horizontal complexity – the species requirements in terms of
horizontal structural heterogeneity was accounted for by interpo-
lating the terrain corrected vegetation heights to form a continu-
ous Canopy Height Model (CHM) with a resolution of 3 m,
representing an average tree crown projection in spruce (Picea
abies) dominated mountain forests (Fig. 3). For further analysis in
FRAGSTATS – an open source software designed for the analysis
of spatial patterns of landscape structure (McGarigal et al., 2002)
– we classified the CHM into four height classes as indicated in
Fig. 3.

We derived potential indicators of forest structural complexity
using FRAGSTATS metrics at patch, class and landscape levels
(McGarigal et al., 2002) (Table 1). Patch level metrics represent
the density of key structural features, such as small forest gaps,
and served as a basis to compute class and landscape metrics.
The class level metrics indicate the abundance, size and variability
of different successional stages as represented by the vegetation
height classes. Further, we measured the proximity of patches
belonging to the same height class as well as their degree of aggre-
gation because we expected this to influence habitat characteris-
tics, such as resource availability and flight distance. Landscape
metrics were mainly used to quantify ecotones by calculating the
density of transitions to non-forest patches, as well as between dif-
ferent vegetation height patches.
2.3.2. Topography-related variables
In addition to the direct measurements of vertical and horizon-

tal forest structure, we considered three topographic site factors
(Table 1). Forest structure is affected by slope or the topographic
position in relation to the surrounding terrain because these site
factors influence edaphic characteristics (e.g. soil temperature,
moisture, depth and nutrient status) and exposure to disturbance.
We hypothesize that positive values of the topographic position in-
dex as well as increasing slopes may be proxies for higher abun-
dances of weakened or dead trees, which are crucial elements of
Three-toed Woodpecker habitat. We further considered the global
radiation because it also influences soil characteristics (e.g. tem-
perature and water content), as well as the energy balance and
thus forest vegetation physiology and structure (Kimmins, 2004).

All three topographic site factors were derived from the digital
25 m grain size terrain model provided by swisstopo (DHM25�
2004, DV033594). The algorithms applied are referenced in Table 1.
We only considered pixel values in forests, as delineated by the
digital mapping product Vector25 (swisstopo, 2012). Because our
aim was to represent the general topographic situation in a km2

presence/absence cell, we aggregated the pixel values to a grain
size of one ha, using the mean per ha to calculate a mean and SD
per km2 cell.
2.3.3. SPOT satellite images
We complemented our predictor set with data from a mosaic of

multi-spectral SPOT-5 satellite images recorded between May and
September 2004–2006 on a 10 m resolution. We implemented the
preprocessed normalized difference vegetation index (NDVI) layer
used by Camathias et al. (2013), which was corrected for shadows,
illumination and atmospheric effects. Here we use NDVI as a proxy
for vegetation density (Goetz et al., 2010) and expect that period-
ically disturbed forests with large amounts of dead wood or struc-
turally complex and relatively sparse mire forests will exert lower
NDVI values than dense production forests. In accordance with the
topography-related variables, we only considered pixels in forested
areas and aggregated the pixel values to 1 ha to calculate a mean
and SD per km2 cell (Table 1).



Table 1
Description of predictor variables. Canopy Height Model (CHM) classes according to Fig. 3.

Variable group

Variable (abbreviation) Unit Definition

LiDAR – vertical complexity
SD quartiles (SDQTL) m Standard deviation for each height quartile across all pixel boxes of the multi-layer raster (see text

for details)
Multi-storied profile (MSP) (index) Index representing the vertical distribution range within the 2nd and 3rd height quartile (see text for

details). Low index values indicate a more evenly distributed vertical vegetation texture, high values
single- or two-layered profiles

LiDAR – horizontal complexity
Patch area (AREA) ha Mean patch area for understory, midstory and canopy CHM class. Class level metric
Forest gap density (GAP) Gaps/ha Sum of forest gaps, i.e. non-forest patches <1 ha, divided by total forest area in ha. Patch level metric
% of landscape (PLAND) % Percentage of landscape (1 km2) for patches of understory, midstory and canopy CHM class. Class

level metric
Clumpy (CLMP) (index) Clumpy Index for patches of understory, midstory and canopy CHM class. Class level metric
Nearest neighbor (NN) m Mean nearest neighbor distances for patches of understory, midstory and canopy CHM class. Class

level metric
Edge density (ED) m/ha Density of edges (pixel transitions) between two CHM classes, i.e. non-forest/understory, non-forest/

midstory, non-forest/canopy, understory/canopy. Landscape level metric
Canopy height heterogeneity (CHH) m Total length of edges (pixel transitions) between understory, midstory and canopy CHM class.

Landscape level metric

Topography-related variables
Topographic position (TPI) (index) Mean and SD of the Topographic Position Index. Measures the exposure of a site in relation to the

surrounding terrain. Positive values: Ridges and hilltops; negative values: sinks, gullies and valley
bottoms (Zimmermann and Roberts, 2001). Algorithm applied: Zimmermann (2000)

Slope (SLP) degrees Mean and SD of slope. Algorithm applied: slope function in ArcGIS (v 10.1)
Solar radiation (SRAD) kJ/m2 Monthly mean and SD of potential global clear sky solar radiation during the months April–October.

Algorithm applied: Kumar et al. (1997)

SPOT-satelllite images
NDVI (NDVI) (index) Mean and SD of the normalized difference vegetation index

Fig. 3. Orthogonal projection of terrain corrected vegetation heights (left) and
classified Canopy Height Models (CHM, 3 m resolution) (right) for a 1 km2 presence
(top) and absence cell (bottom).
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2.4. Data analysis

We used boosted regression trees (BRT) to model species pres-
ence as a function of the predictor variables, as well as the squared
terms of predictors with potentially unimodal responses. BRT are
an advanced machine learning-based regression modeling
technique that is ranked among the best performing species
distribution modeling algorithms (Elith et al., 2006). It can handle
any variable type (e.g. numeric, binary, categorical), is insensitive
to outliers, controls for over-fitting and automatically models typ-
ical ecological features such as nonlinearities and interactions
(Friedman, 2002; Elith et al., 2008).

We fitted BRT models in R using the gbm function in the dismo
package (Hijmans et al., 2011) and custom written code by Elith
et al. (2008). The settings for the model parameters (tree complex-
ity, learning rate and number of trees) were defined in accordance
with recommendations by Elith et al. (2008) and optimized by
comparing model performance for a range of different parameter
combinations. The five most parsimonious final models were iden-
tified by the simplification procedure proposed by Elith et al.
(2008) which involves sequential removal of least important pre-
dictor variables based on cross-validated prediction accuracy.

The relative importance of each predictor variable was deter-
mined based on how often a variable was selected and on the mod-
el improvement as a result of the selections. We chose a threshold-
based approach to visualize the fitted functions using partial
dependence plots, which indicate the effect of each predictor var-
iable on the response variable after taking into account the average
effect of all other predictors in the model (Elith et al., 2008). The
residuals of each final model were checked for spatial indepen-
dence by calculating correlograms and Moran’s I coefficients over
various lag distances and no statistically significant spatial auto-
correlation was found.

The predictive performance of each model was determined
based on ten-fold cross validation. We calculated two evaluation
measures: the percentage of explained predictive deviance (D2)
and the area under the receiver operating characteristic curve
(AUC). The AUC value is a threshold-independent measure that
indicates the model’s ability to discriminate between presence
and absence cells (Fielding and Bell, 1997). AUC values >0.7 indi-
cate acceptable, 0.8–0.9 excellent, and >0.9 outstanding model dis-
crimination (Hosmer and Lemeshow, 2000).



308 F. Zellweger et al. / Forest Ecology and Management 307 (2013) 303–312
3. Results

3.1. Model performance

We developed BRT models for all four species individually, as
well as for the sympatric occurrence of at least three species. Mod-
el predictive performance based on AUC values ranged from out-
standing (sympatric occurrence, Capercaillie) to excellent (Hazel
Grouse, Three-toed Woodpecker), and acceptable (Pygmy Owl)
(Table 2). The range of the explained predictive deviance varied
considerably among the five models, with highest values for sym-
patric occurrence and Capercaillie, supporting the outstanding pre-
dictive power of these two models. All the five models showed a
high robustness, as interpreted from the standard errors.
Fig. 4. Predictor variable group contribution to total deviance explained in the five
final BRT models. C = Capercaillie, HG = Hazel Grouse, TTW = Three-toed Wood-
pecker, PO = Pygmy Owl, Symp = Sympatric occurrence.
3.2. Relative influence and effect of predictor variables

Predictor variable contributions to the total deviance explained
in the five BRT models ranged from 7% to 24% (Table 2), with the
LiDAR-based measures together always accounting for more than
50% of the overall contributions. Variables directly derived from
the LiDAR point cloud (vertical complexity) were the most impor-
tant group, whereby the standard deviation within the 2nd and 3rd
quartile and the multi-storied profile index accounted for most of
the contribution. These three variables were retained by four of
five final models, however, in the Pygmy Owl model they were less
important. Variables based on the interpolated CHM (horizontal
complexity) formed the second main source of explained deviance.
In this group, the distance to the nearest neighbor of midstory
patches was the most important predictor and retained by all mod-
els except for the Three-toed Woodpecker model. Edge and forest
gap densities were most important in the Hazel Grouse and Pygmy
Owl models and were not retained by the sympatric occurrence
model. The mean topographic position index and the mean NDVI
contributed to all five models, however, NDVI variability, as ex-
pressed by the standard deviation (SD), was only important in
Table 2
Performance of the five final BRT models in terms of predictive deviance exp
(AUC) as well as the contribution of the predictor variables (in percent) to th
(SE) calculated from ten cross-validation replicates are provided.

Model name

Capercaillie Hazel Grouse

Predictive performance
D2 43.6 (2.7) 29.0 (1.9)
AUC 0.92 (0.02) 0.84 (0.01)

Variable contribution in %

LiDAR – vertical complexity
SD 1st quartile
SD 2nd quartile 15.3
SD 3rd quartile 11.7 12.7
SD 4th quartile 13.4
Multi-storied profile 10.6 13.8

LiDAR – horizontal complexity
Nearest neighbor midstory 19.8 11.7
Nearest neighbor canopy
% of landscape understory 6.9
Edge density non-forest/midstory
Edge density non-forest/canopy 7.3 9.3
Forest gap density 13.7
Canopy height heterogeneity 8.6

Topography-related variables
Mean topographic position 11.2 11.8
Mean solar radiation

SPOT satellite images
Mean NDVI 10.6 11.5
SD NDVI
the Three-toed Woodpecker model. Topography-related variables
and the NDVI were substantially more important in the Three-toed
Woodpecker model than in the other models, although the Pygmy
Owl model also responded comparably stronger to topography
(Fig. 4). Half of the explained deviance in the Hazel Grouse model
stems from CHM-derived variables, whereby such variables only
marginally contributed to the Three-toed Woodpecker model. Both
the Capercaillie and sympatric occurrence models show similar
patterns of variable group contributions, with vertical complexity
accounting for half of the explained deviance.

We represent the partial responses of the predictor variables by
reporting the fitted response curves for the sympatric occurrence
model only (Fig. 5), because the variables in this model are good
representatives for the other models. The two most important vari-
ables, SD 2nd quartile and the nearest neighbor of midstory
patches, had clear threshold values at 6 m and just below 10 m
respectively. Thus, habitat quality, as represented by probability
lained (D2) and area under the receiver operating characteristics curve
e total deviance explained. For D2 and AUC means and standard errors

Three-toed Woodpecker Pygmy Owl Sympatric occurrence

27.7 (1.8) 15.5 (1.8) 63.1 (1.8)
0.84 (0.02) 0.77 (0.02) 0.97 (0.01)

14.4
19.2 15.5 24.1
8.1 10.8

12.4 16.7

17.3 21.2
8.0

11.0
15.5
9.7

15.5 16.1 9.1
6.9

15.9 11.6 10.1
11.0
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Fig. 5. Partial dependence plots showing the fitted functions for each of the predictor variables retained by the sympatric occurrence BRT model. The graphs show the effect
of a particular variable on the response variable: increasing fitted function values indicate that species presence/absence responded positively, decreasing values the opposite.
Values on the y-axis are uniformly scaled so that the relative importance of the variables can be visually compared.
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of species presence, strongly increased for values below these
thresholds. For all other variables except topographic position,
the direction of the effect on the response variable was the same,
however, less distinctive. The effect of the mean topographic posi-
tion index is characterized by a more or less gradual increase in the
fitted function, which means that species presence was affected
positively by increasing values.

4. Discussion

We evaluated a set of direct and indirect variables of forest
structure to predict the individual and sympatric occurrence of
four bird species with narrow and complementary habitat require-
ments, thus being indicative of forest structural complexity. The
results from the sympatric occurrence model indicate that struc-
turally complex forest landscapes harboring the broad range of
structural characteristics required by our target species were pre-
dicted with an astonishingly high accuracy. This evidences that
we have developed a comprehensive set of forest structural indica-
tors reflecting well-established species-habitat relationships, thus
providing new insights into the relationship between forest struc-
tural attributes and species richness at the landscape scale. Apart
from the high performance of the sympatric occurrence model,
the Capercaillie model also performed very well, and showed sim-
ilar variable group contributions. This suggests that Capercaillie
may be a suitable surrogate organism for structurally complex for-
est habitats, which corresponds well with other studies proposing
Capercaillie as a potential umbrella species for the autochthonous
montane and subalpine forest species communities (Suter et al.,
2002; Pakkala et al., 2003).

4.1. Ecological relevance of predictors

The use of detailed three-dimensional information of forest
vegetation directly derived from the LiDAR point cloud allowed
us to analyze the relationship between vertical forest structure
and species richness, originally described by MacArthur and
MacArthur (1961) who proposed the concept of foliage height
diversity (FHD) to explain forest bird species diversity. For the
interpretation of the predictors used in this study it is important
to keep in mind that they were calculated for a spatial reference
of 1 km2, thus representing between-stand variation patterns
rather than single stand characteristics. Small standard deviations
in the height quartiles represent forest landscapes with
continuously and evenly distributed vegetation elements along
the vertical profile, as it is typical for forests with a relatively
sparse canopy cover or old-growth forests subject to periodical
small-scale disturbance. Thus, small standard deviations of, e.g.
the 2nd and 3rd height quartile represent forests with compara-
bly high light availabilities and rich in vegetation elements in
the lower and upper middle strata of the forest, which in turn
promote important habitat characteristics of our target species,
such as hiding or perching opportunities or a rich ground vegeta-
tion. On the other hand, forest landscapes dominated by patterns
of vertically homogeneous stands in different development stages
and heights, which typically result from intensive stand-level
management, will exhibit larger standard deviations of the quar-
tile heights (Fig. 2). Thus, our results correspond well with results
from field studies investigating in the relationship between verti-
cal forest structural complexity and habitat quality for Capercail-
lie (Bollmann et al., 2005), Hazel Grouse (Schäublin and
Bollmann, 2011) and Three-toed Woodpecker (Pechacek and
d’Oleire-Oltmanns, 2004). However, especially when considering
specific species rather than species diversity, it is not vertical
structure per se that affect avian habitat, since vertical structure
may be an indicator of the presence of critical forage species or
the abundance of breeding sites (Helmer et al., 2010; Schäublin
and Bollmann, 2011).

While multi-storied forest profiles are one of the most com-
monly used structural attributes to describe forest stand structure
in the field (McElhinny et al., 2005), several studies developed indi-
ces of vertical complexity from LiDAR data. Goetz et al. (2007) de-
rived a vertical distribution ratio from waveform LiDAR to explain
bird species richness across a variety of guilds, and their LiDAR
measurements clearly outperformed habitat variables derived
from optical sensors. Clawges et al. (2008) used discrete return Li-
DAR to calculate several versions of the foliage height diversity in-
dex according to MacArthur and MacArthur (1961), and showed
that their measurements significantly correlated with bird species
diversity. Similar to our quartile-based variables, Lesak et al.
(2011) used percentile height and density metrics derived from a
LiDAR point cloud to model forest songbird species richness. In line
with these previous findings, the index of multi-storied profiles
used in this study was identified as an important model parameter.
However, the results suggest that generalizing the mean quartile
heights over forest landscapes of 1 km2 to form a single index en-
tails a loss of ecologically valuable information, such as the vari-
ability of the quartile heights.
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Spatial patterns of horizontal forest structures, such as edge and
gap densities or whether trees are distributed randomly, evenly
dispersed or aggregated are considered important features directly
affecting wildlife habitat and biodiversity (Lindenmayer and
Franklin, 2002). Our results confirm that detailed information of
canopy height and spatial patterns thereof, as derived from a dig-
ital canopy height model, provides adequate and ecologically
meaningful forest structural attributes. Forest edges and small
gaps, for example, have been shown to be preferred by Hazel
Grouse because the increased light availability at such sites favors
light demanding, deciduous resource shrubs and trees, while cover
against predators is accessible within short distances (Schäublin
and Bollmann, 2011). Pygmy Owls, on the other hand, use edges
because they offer perches from which they can search for prey
in nearby open habitats (e.g. gaps) but also because edge zones
potentially harbor higher densities of passerines and small mam-
mals (Strom and Sonerud, 2001). Further, LiDAR-derived tree edge
length was also identified as an important model parameter in a
Capercaillie habitat assessment (Graf et al., 2009).

We identified variation of canopy height as a further structural
attribute of high quality habitat, as indicated by comparably small
nearest neighbor distances between patches of intermediate can-
opy heights as well as high values of our canopy height heteroge-
neity metric. Varying canopy heights over relatively small areas are
typical for periodically disturbed old-growth mountain forests rich
in structure, and have previously been used to explain patterns of
riparian bird species occurrence (Seavy et al., 2009) as well as the
abundance and assemblages of forest passerines (Müller et al.,
2009).

Complementing our LiDAR variable set with topographic site fac-
tors and NDVI data improved the predictive power for all five mod-
els. However, their relative contribution was considerably higher in
the Three-toed Woodpecker model and to a lesser extent also in the
Pygmy Owl model. The topographic position in relation to the sur-
rounding terrain affects edaphic characteristics, such as soil tem-
perature, moisture, depth and nutrient status, but also exposure
to gravitational disturbances (e.g. snow movements or rock fall) or
exposure to wind (Zobel et al., 1976; Kimmins, 2004). Ridges or hill
tops, as expressed by high values of the topographic position index,
will be exposed to comparably high winds and will in general have
dryer, shallower and nutrient poorer soils than sites in sinks, gullies,
valleys or toe slopes (Zimmermann and Roberts, 2001). Thus, weak-
ened or dead trees are likely to be more abundant on sites with high
index values. Further, trees on equator facing slopes will be exhib-
ited to higher solar radiation and thus warmer soil temperatures
and potentially drought stress, making them more susceptible to
disturbance agents such as bark beetles that enhance regional forest
structural complexity (Wermelinger, 2004). Forests with compara-
bly low NDVI values and thus low vegetation density were favored
by all species and particularly improved the Three-toed Wood-
pecker model, which was further enhanced by spatial variability
of the NDVI. This variability was at least partially caused by local
disturbance patterns stemming from wind-throws or insect infesta-
tions providing important foraging habitats for the Three-toed
Woodpecker (Pechacek and d’Oleire-Oltmanns, 2004). In line with
White et al. (2012), who modeled coarse woody debris with NDVI
after an ice storm, recently disturbed sites with structural legacies
such as snags and logs were expected to be temporarily reflected
in low NDVI values. Although the forests studied here are domi-
nated by coniferous tree species, larger portions of deciduous can-
opy tree species (e.g. beech) in lower elevation sites may have
increased NDVI values (Van Wagtendonk and Root, 2003). Consider-
ing the strong association of Three-toed Wookpeckers to coniferous,
especially spruce dominated forests, we assume that mean NDVI
values at least partly represented differences in canopy dominance
of broadleaf versus coniferous tree species.
4.2. Model generality and precision

The lack of consistent data over large areas is often a major con-
fining factor for the modeling of species and habitat distributions
based on predictor variables with direct ecological significance.
In consequence, ecologists often use indirect predictors to develop
large-scale habitat distribution models. However, the lacking asso-
ciation with direct habitat factors and thus species occurrence may
lower the generality of such models (Guisan and Zimmermann,
2000; Graf et al., 2006). We calibrated accurate predictive models
mainly based on habitat variables with direct ecological signifi-
cance and used data from three biogeographically different moun-
tain regions representing a large range of ecological niches realized
by the study species. Thus, our results suggest that national LiDAR
datasets are highly valuable for optimizing the trade-offs between
generality, reality and precision in habitat and species distribution
models (Guisan and Zimmermann, 2000), although direct transfer-
ability of our models to other European montane and subalpine
mountain forests has not been shown due to missing data from
outside the calibration range.

Despite the advantages of such datasets, species distribution
models strongly depend on the quality and precision of the depen-
dent variable, i.e. the species occurrence data. Our approach in-
volves area-wide species data that incorporate potential sources
of uncertainty, e.g. with regard to the precise location of species
evidence (i.e. whether the observations allocated to the corre-
sponding 1 km2 were located centrally or in the periphery of the
cell). This may entail a considerable amount of variability of habi-
tat quality in the presence cells. The effect of this variability on
model accuracies may partially be species specific. Capercaillie,
for example, has the largest territories of our study species, averag-
ing 550 ha (Storch, 1995). Thus, the surrounding area (and thus the
km2-presence cell) where Capercaillie was detected is more likely
to constitute suitable habitat, compared to for example Hazel
Grouse, who occupy only small territories of 10–40 ha (Bergmann
et al., 1996). Apart from the fact that Capercaillie was expected to
integrate well due to its narrow habitat requirements in terms of
forest structure, this may have added to the comparably high accu-
racy in the Capercaillie model.

Model prediction accuracies would most likely increase with
more precise species data, however, its availability across broad
spatial extents is normally restricted. Furthermore, for mobile spe-
cies such as our target species, area-wide species occurrence data
of limited precision, but representatively sampled across multiple
regions, may be preferable to precise, systematically sampled data
across small extents (Braunisch and Suchant, 2010).

4.3. Limitations, outlook and conclusions

Interpreting variables derived from remote sensing and in par-
ticular LiDAR data requires knowledge about the technical back-
ground and the assumptions made in the variable extraction
process. Different resolutions of interpolated canopy height mod-
els, for example, influence the interpretation and may change the
explanation strength of variables describing forest structure, such
as variability of canopy heights. Canopy height variability mea-
sured based on a 0.25 m resolution (sub-tree level), as used by
Müller and Brandl (2009) to predict forest beetle assemblages, is
associated with the vertical variation of canopy height, whereby
a resolution of 3 m (single tree level), as in this study, is more re-
lated to the horizontal arrangement of trees or tree groups. This
can lead to inconsistencies between different studies and compli-
cates comparison.

Translating remote sensing variables into habitat management
recommendations is often difficult and calls for further develop-
ment. As a starting point, threshold-based variable analysis as
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suggested in this study may be a promising way to increase the
applicability of such variables in management and monitoring
schemes. To enhance forest inventories and account for consis-
tency, it would be desirable to work with LiDAR metrics that cor-
relate well with field-based parameters of forest stand structure.
However, such variables may be limited in reflecting observed
relationships with faunal diversity, especially on the landscape-le-
vel, where important patterns may only emerge from area-wide
stand mosaic analysis. Thus, regional forest management aiming
at integrating off-reserve conservation planning into multifunc-
tional forestry may especially benefit from innovative possibilities
for large-scale assessments of forest structural complexity and
habitat quality. To cut costs of repeated LiDAR data acquisition,
photogrammetric updates of canopy height models would allow
for change detection and could be used to monitor the effects of
conservation related forest management practices.

We conclude that the occurrence of bird species with narrow
and complementary habitat requirements related to forest struc-
ture can accurately be modeled using remote sensing, particularly
LiDAR data. However, the accuracy of the models varies consider-
ably depending on the ecology of the target species. Complement-
ing LiDAR with multispectral and topographic data related to
vegetation density and exposure to disturbance improved model
accuracies, especially for species depending on abundant snags or
weakened trees. LiDAR-derived measures of forest structural char-
acteristics and complexity reflected realistic cause-effect relation-
ships across large areas and produced species and habitat
distribution models of considerable generality, while keeping a
high level of precision. This enables forest managers and conserva-
tionists to identify areas of high forest structural complexity and to
integrate this information into regional and countrywide manage-
ment plans.
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