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Bright moonlight triggers natal dispersal departures
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Abstract Upon leaving their natal area, dispersers are
confronted with unknown terrains. Species-specific perceptu-
al ranges (i.e. the maximum distance fromwhich an individual
can perceive landscape features) play a crucial role in spatial
movement decisions during such wanderings. In nocturnal
animals that rely on vision, perceptual range is dramatically
enhanced during moonlight, compared to moonless condi-
tions. This increase of the perceptual range is an overlooked
element that may be responsible for the successful crossing of
unfamiliar areas during dispersal. The information gathered
from 143 radio-tagged eagle owl Bubo bubo juveniles in
Spain, Finland and Switzerland shows that, although the de-
cision to initiate dispersal is mainly an endogenous phenom-
enon determined by the attainment of a given age (∼6months),
dispersers leave their birthplace primarily under the best light

conditions at night, i.e. when most of the lunar disc is illumi-
nated. This sheds new light into the mechanisms that may
trigger dispersal from parental territory.

Keywords Dispersal age . Lunar cycle . Moon phase .
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Introduction

The start of natal dispersal represents a risky stage in
the life of animals, which entails multiple costs (Bonte
et al. 2012). Consequently, when the time comes to leave
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the birthplace, individuals are expected to start their dispersal
under the best conditions.

Visual cues are crucial for animals moving at night; for
instance, many migratory birds refer to moonlight position to
establish and maintain orientation during their nocturnal jour-
ney (Martin 1990). The lunar cycle (full moon to full moon,
29.5 days) determines important environmental changes that
influence and can be perceived by animals. Night-time light
levels are far from uniform: around full moon, the increased
light levels at night may determine the occurrence of occa-
sional nocturnal activities (like night foraging and migration)
in otherwise strictly diurnal birds (Pienkowski 1982; Martin
1990; Bulyuk et al. 2009). Nocturnal birds also benefit from
the additional light provided by a completely, or nearly,
full moon (Martin 1990; Brigham and Barclay 1992):
night-time movements and feeding appear to be en-
hanced by moonlight, independent of the visual sensi-
tivity of owls and other nocturnal birds. Thus, although
there are certainly many more favourable conditions than
those provided by moonlight, the lunar light has the potential
to represent an important factor affecting nocturnal movement
across unknown landscapes.

The perceptual range of animals, i.e. the maximum distance
from which an individual can perceive landscape features and
elements, plays an important role in spatial processes (Zollner
and Lima 1997). The perceptual range affects movement strat-
egies and behaviours during dispersal, as well as the probability
of successfully reaching suitable habitats (Lima and Zollner
1996; Zollner and Lima 1999a, b). For nocturnal species, the
perceptual range is strongly affected by the ambient light
(Zollner and Lima 1997; Zollner and Lima 1999a, b): their
perceptual abilities increase as ambient illumination increases,
even though they have considerable visual acuity (Zollner and
Lima 1999a, b). It remains poorly understood to which extent
moonlight phases may interfere with spatial movement decision
such as natal dispersal in nocturnal species.

Here, we show that a nocturnal avian predator, the eagle
owl Bubo bubo, starts dispersal primarily when juveniles are
∼6 months old and the ambient light is the most favourable for
perceiving and exploring unfamiliar lands. This phenomenon
occurs within its whole distribution range, as demonstrated
here by eagle owl natal dispersal in three geographically and
ecologically diverse European areas spread over a wide lati-
tudinal gradient.

Study area and methods

Data collection

From 2003 to 2012, wemarked 95 juveniles (from 23 nests) in
Spain with conventional units (Biotrack; http://www.biotrack.
co.uk; for details on study area and radiotracking procedure,

see Delgado et al. 2010; Penteriani and Delgado 2011) and 24
juveniles (from 18 nests) in Finland with satellites units
(Microwave Telemetry; http://www.microwavetelemetry.
com). Twenty-four juveniles (from 17 nests) were marked in
Switzerland (for details on the study area and radiotracking
procedure, see Aebischer et al. 2010; Schaub et al. 2010) with:
(1) 30 g battery-powered satellite transmitters supplied by
North Star (http://www.northstarst.com) and (2) 15 g VHF
tags (Holohil; http://www.holohil.com). The weight of the
transmitters was between the 3 and the 3.5 % of the weight
of the smallest individual at the time of tagging
( S p a i n— 8 5 0 g , m e a n ± SD = 1 2 6 7 ± 2 2 6 . 4 g ;
Fin land—1,370 g, mean ± SD = 1861.2 ± 283.8 g;
Switzerland—1,000 g, mean±SD=1506±260.9 g; see also
Penteriani et al. 2011). Signals from the satellite
transmitters were recorded by the ARGOS satellite
system (www.cls.fr). To make comparable the data
acquired by different radiotracking equipments and
methods, for each individual we estimated the start of
dispersal in the same way (Delgado and Penteriani 2008):
we defined dispersal as starting when the distance of each
location from the nest became larger than the global mean
distance travelled to the nest, that is, when the distance of each
location from the nest started progressively increasing rather
than fluctuating around a low value. Owls were sexed by
molecular procedures using DNA extracted from blood sam-
ples (Delgado et al. 2010).

Moon phases

Over the study years, daily variations of the moon phases were
obtained from the Naval Oceanography Portal (http://aa.usno.
navy.mil/data/docs/RS_OneYear.php) and expressed in terms
of the fraction of moon disc illuminated and whether the moon
was waxing or waning. Following the periodic regression
approach suggested by de Bruyn and Meeuwig (2001) and
applied elsewhere (e.g. Kuparinen et al. 2010; Penteriani et al.
2011, 2013), the fraction of moon disc illuminated was con-
verted into radians (θ), with one lunar cycle corresponding to
a gradual change from 0 to 2π radians (0 and 2π radians
correspond to the full moon, and π radians corresponds
to the new moon). Cos(θ), sin(θ), cos(2θ) and sin(2θ)
transformations were included in the statistical model as
explanatory variables to investigate possible lunar ef-
fects on eagle owl behaviour throughout the lunar cycle
(see deBruyn and Meeuwig (2001) for details). Given that
the probability to have a cloudy night is equally distributed
over the study period and, consequently, among all moon
phases, we considered such variation to lead to additional
noise, which is likely to weaken the signal strength in
our results rather than to create systematic biases (Penteriani
et al. 2013).
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Statistical analyses

To test the effects of moon phase, age (days after hatching)
and sex of individuals, as well as the interactions between age
and the different moon phases on the decision to start dispersal
(as Julian date), we used linear mixed-effects models. We first
selected the optimal structure of the random component,
which was the one containing three levels of random effects,
represented by birthplace nested in country nested in year
(ESM 1). The response variables were scaled, i.e. normalised
to zero mean and unit variance. Model simplification was
performed by backward selection of variables from the full
model, and models were compared using likelihood ratio tests
until a minimal adequate model was obtained (Crawley 2007).
An ANOVA test compared age of dispersal among the three
countries. All statistical analyses were performed in R 2.10.1
statistical software (R Development Core Team 2009), nlme
(Pinheiro et al. 2009) package.

Results

Mean age of dispersal (±SD) was 163.6±20.1 days (range=
116–222 days), not differing significantly (F2,140=2.40, P=
0.10) between Spain (mean=166.8±20.1 days, range=128–
222 days), Finland (mean=150.0±18.6 days, range=116–
185 days), and Switzerland (mean=164.1±16.6 days,
range=140–209 days).

The linear mixed-effects model (Table 1 and ESM 1)
demonstrated that the decision to start dispersal was influ-
enced by: (1) age of individuals, i.e. dispersal mainly started
when juveniles were ∼6 months old; (2) sex, with males (age
of dispersal=161.3±22.1 days, range=116–222 days)
showing more variation in their departure age than
females (age of dispersal=166.6±16.9 days, range=
127–206 days); (3) the moon phase, with dispersal depar-
tures mostly occurring during a full moon (Fig. 1); and (4) the
interaction between age and moon phase: the moonlight effect
was the highest when owls dispersed at the average dispersal
age of this species.

Discussion

Dispersal age appears to be a constant trait of eagle owl life
history: most departures occurred in a relatively narrow time
window, despite the diverse ecological conditions and wide
latitudinal gradient in this study (fromMediterranean to boreal
habitats). Yet, most juveniles approaching dispersal age pre-
ferred to initiate dispersal when most of the lunar disc was
illuminated. However, when individuals are not able to dis-
perse within that favourable temporal window, they cannot
pay much attention to the environmental conditions under
which to initiate dispersal. Despite the importance of age-
specific dispersal, this latter has been ignored in most of the
evolutionary theory of dispersal (Johst and Brandl 2000). In
an evolutionary context, the evolution of age-specific dispers-
al strategies may be due to an increase in the efficiency of
dispersal at certain age classes (Johst and Brandl 2000).
Actually, within the life cycle, timing of dispersal may influ-
ence the evolution of dispersal strategies and can be important
in predicting the favoured dispersal strategies (Johst and
Brandl 1997). One common advantage driving all juveniles
of a same species to disperse as soon as they are ready (i.e. at
the same age) is the increased access to higher quality breed-
ing sites: the rapid acquisition of an area where to settle is
likely to be especially important in resident, territorial birds,
principally if residence is determined by order of arrival
(Ellsworth and Belthoff 1999). Though the proximate factors
that stimulate juveniles to initiate dispersal are not well un-
derstood, either exogenous or endogenous factors may influ-
ence the timing of dispersal (Belthoff and Dufty 1998).
Several behaviours have been suggested to appear as the

Table 1 The linear mixed-effects model showing the effect of moon
phase, age and sex of individuals on the decision to start dispersal

Value SE df t P

Intercept 264.63 8.28 65 31.96 <0.001

Age 20.65 0.99 62 20.79 <0.001

Sex2 −2.05 0.81 62 −2.54 0.014

I(cos(rad)) −2.23 1.23 62 −1. 81 0.074

Age: I(cos(rad)) −3.01 1.13 62 −2.66 0.010

Fig. 1 Dispersal departures of eagle owls at various moon phases. When
individuals reach their dispersal age (see Results), they mainly leave the
natal area during bright nights
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post-fledging period progresses, e.g. parental aggression to-
wards young (Bunn et al. 1982; Wiggett and Boag 1993),
aggression of young toward each other (De Laet 1985;
Strickland 1991) and decreasing food availability within the
natal area (Veltman 1989; Kenward et al. 1993). Despite
evidence that exogenous factors may drive dispersal, in some
birds neither diminishing food supplies nor parental aggres-
sion elicited dispersal, dispersal being mostly initiated by
endogenous mechanisms (Nilsson 1990; Belthoff and Dufty
1998). For example, body condition or social status have been
considered to play a role in triggering dispersal (Nilsson and
Smith 1985; Ellsworth and Belthoff 1999). In two owl spe-
cies, the western Otus kennicottii and the eastern Otus asio
screech owls, the action of a specific hormone, the adrenal
glucocorticoid corticosterone, seems to be responsible of in-
creasing activity levels and changes in body condition (see
also Silverin 1997; Wingfield and Ramenofsky 1997), which
ultimately trigger juvenile dispersal (Ritchison et al. 1992;
Belthoff and Dufty 1995, 1998). That is, exogenous stimuli
related to the termination of parental feeding, increased ag-
gression among siblings or other factors may not be required
for dispersal departure to start, a hypothesis which is support-
ed by the evidence that eagle owls under different exogenous
stimuli started dispersal at the same age. However, the inter-
action between endogenous and external stimuli at the origin
of dispersal initiation demonstrates that the dispersal of eagle
owls provides a good example of an ecological process mod-
ulated by the combination of internal and environmentally
determined behaviours, which have evolved to fit within the
natural geophysical periods (Brown 1972).

Because light and dark cycles have existed throughout
evolutionary time, many organisms have evolved behaviours
that are cued by moon cycles. Indeed, this is not the first time
that animal movements have shown an association with moon
phases. Increased lunar illumination can increase: (a) swim-
ming depth of pelagic sharks and seals in response to changes
in the vertical distribution of their prey related to the afore-
mentioned illumination (e.g. Trillmich and Mohren 1981;
Saunders et al. 2011); (b) fish migrations given that they
may utilise moonlight to navigate and relocate themselves
more easily (e.g. Leatherland et al. 1992; Hasegawa 2012);
(c) dispersal and migration movements in some insects and
crustaceans, which may use the moon for vision, orientation
and navigation (e.g. Danthanarayana 1986; Scapini et al.
1997); (d) perceptual abilities of dispersing rodents (Zollner
and Lima 1999a, b); (e) locomotor activity in owl monkeys of
the genus Aotus (Fernández-Duque et al. 2010); and (f) noc-
turnal bird migrations (e.g. Richardson 1978; James et al.
2000). In the case of eagle owls, we consider plausible the
possibility that starting dispersal during the brightest nights
increases the perceptual range of dispersers (Zollner and Lima
1997), helping inexperienced juveniles deal with unfamiliar
habitats and find prey. Actually, the potential for owls to detect

prey increases with increasing light levels (e.g. Clarke 1983;
Kotler et al. 1991), which could be crucial for juvenile sur-
vival in the days immediately following departure from the
natal area. Furthermore, moonlight intensity (due to moon
phases) and the time during which the moon is visible in the
night sky are correlated (i.e. the nights are brighter for longer),
which might represent an additional advantage for individuals
to disperse during full moon. Lunar light can thus be consid-
ered both an environmental condition that is as important as
diurnal light and a resource, similar to time, space and tem-
perature (Gerrish et al. 2009).

Finally, it is well known that predator-prey interactions are
subject to monthly changes owing to the lunar cycle, with
predators adjusting their activity rhythms and strategies in
response to the increased concealment of prey during the
brightest nights (Mukherjee et al. 2009; Kotler et al. 2010;
Penteriani et al. 2011). In view of the current results, the lunar
cycle might also have the potential to influence predator-prey
relationships on a seasonal basis. If, as we may expect, other
nocturnal predators also take advantage of the lunar light to
start dispersal (Zollner and Lima 1997), we might observe an
increased number of predators (adults + dispersers) actively
moving around the full moon phase after reproductions. This
phenomenon could in turn increase overall predation risk and
pressure, exerting a temporally short but profound influence
on predator-prey dynamics.
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