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Man-induced activities modify demographic parameters
in a long-lived species: effects of poisoning and health policies
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Abstract. Recent changes in sanitary policies within the European Union (EU)
concerning disposal of carcasses of domestic animals and the increase of non-natural
mortality factors, such as illegal poisoning, are threatening European vultures. However, the
effects of anthropogenic activities on demographic parameters are poorly studied. Using a
long-term study (1994–2011) of the threatened Pyrenean Bearded Vulture Gypaetus barbatus
population, we assess the variation in the proportion of breeding pairs, egg-laying dates,
clutch size, breeding success, and survival following a sharp reduction in food availability in
2005 due to the application of restrictive sanitary policies decreasing livestock carcass
availability. We found a delay in laying dates and a regressive trend in clutch size, breeding
success, and survival following policy change. The maintenance of specific supplementary
feeding stations for Bearded Vultures probably reduced the negative effects of illegal poisoning
and food shortages, which mainly affected subadult survival. A drop in food availability may
have produced changes in demographic parameters and an increase in mortality due to an
increased exposure to contaminated food. As a result, supplementary feeding as a
precautionary measure can be a useful tool to reduce illegal poisoning and declines in
demographic parameters until previous food availability scenarios are achieved. This study
shows how anthropogenic activities through human health regulations that affect habitat
quality can suddenly modify demographic parameters in long-lived species, including those,
such as survival, with high sensitivity to population growth rate.

Key words: Bearded Vulture; breeding parameters; European sanitation policies; Gypaetus barbatus;
health regulations; life history; poisoning; Pyrenees, Catalonia, Spain; supplementary feeding; survival.

INTRODUCTION

Increasing, negative anthropogenic effects on ecosys-

tem dynamics are provoking biodiversity losses, with

ecological consequences for ecosystem function (Loreau

et al. 2002, Naeem et al. 2009). Species with ‘‘slow life

styles’’ (Sæther and Bakke 2000) are especially sensitive

to anthropogenic effects as they are of large size, high

adult survival, and low fecundity (Bennett and Owens

1997), three traits that characterize species with slow life

styles. Thus, any factor that disturbs the balance

between fecundity and survival will be particularly

hazardous for these taxa (Owens and Bennett 2000,

Cardillo et al. 2004). For example, the recent and

sudden appearance of non-natural mortality factors

related to the ingestion of veterinary drugs or the

increase in the use of illegal poison baits severely

affected populations of Old World vultures (Green et

al. 2004, 2006, Virani et al. 2011, Margalida 2012). In

parallel, a recent change in European health policy may

be exacerbating the precarious status of these large

species. Coinciding with the outbreak of bovine spon-

giform encephalopathy in 2001, scavenger food resourc-

es have been reduced because farmers were forbidden to

retain certain dead livestock (Donázar et al. 2009b,

Margalida et al. 2010). In situations such as this, policy

decisions can have important consequences for biodi-

versity conservation (Meffe and Viederman 1995). The

need to provide timely and meaningful information to

policy makers can depend on the existence of large data

sets (Clutton-Brock and Sheldon 2010). We illustrate the

ability of long-term data to inform policy decisions by

considering one European vulture species affected by

new mortality sources and changes in livestock handling

policy.

The Bearded Vulture Gypaetus barbatus is a long-lived

threatened species with a European population of only

170 territories. The Spanish population, with 117

territories, is considered the most important in the

Palaeartic, and conservation measures applied to this

population are critical for the maintenance of a
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European metapopulation. However, in recent years this

population has been characterized by high adult
mortality as a result of the increased use of illegal

poisoning (Margalida et al. 2008b, Oro et al. 2008). In
contrast, other causes such as collision and hunting

practices diminished progressively during this time
(Margalida et al. 2008b, Martı́nez-Abraı́n et al. 2009).
Thus, taking into account that this illegal practice

increased during the last years and can be considered as
the main non-natural cause of mortality of wildlife in

Spain (Margalida 2012), we consider this to be the most
plausible factor affecting Bearded Vulture population

dynamics (see Oro et al. 2008). In addition, geographical
range expansion is very low because supplementary

feeding sites are keeping pre-adult individuals in the core
area (Margalida et al. 2008a), where there is density-

dependent depression in fecundity (Carrete et al. 2006a)
and an increase in the proportion of polyandrous

territories with lower productivity (Carrete et al. 2006b).
Considering the importance of such information for

managers and conservationists, our purpose is to test if
two human-induced activities (i.e., illegal use of poison

baits and regulations in the availability of domestic
carcasses) can modify life-history traits in a threatened

vulture population. Some assessment of food resources
and their relationship to population dynamics (Colomer
et al. 2011, Margalida et al. 2011b, Margalida and

Colomer 2012, Martı́nez-Abraı́n et al. 2012) and
behavioral changes (Zuberogoitia et al. 2010, Margalida

et al. 2011a) has been documented. In this sense,
although food availability can also influence life-history

traits and the scientific literature in birds is abundant
(Lack 1968, Western and Ssemakula 1982, Oro et al.

1999, 2004, Sibly et al. 2012), to our knowledge, few
studies have attempted to relate the effects of human-

induced activities on life-history traits in long-lived
raptor species (Martı́nez-Abraı́n et al. 2012). Here we

analyze breeding parameters (during 1994–2011) and
survival probabilities (during 1987–2011) to determine

whether changes in the availability of food supply and/
or the effects of illegal poisoning are important

anthropogenic mortality factors affecting this popula-
tion, and whether they can modify life-history traits in a
long-lived species. In particular, we assess whether food

or mortality affects the proportion of breeding pairs,
egg-laying dates, clutch size, productivity, and survival

in the Pyrenean Bearded Vulture population.

METHODS

Study area

The study was mainly carried out from 1994 to 2011

in an 8450-km2 area in the central Pyrenees (Catalonia,
northeastern Spain). This area is inhabited by a Bearded

Vulture population that has increased from 17 territories
in 1994 to 37 in 2011. It supports an important wild and
domestic ungulate population, and 16 supplementary

feeding sites (see Margalida et al. 2011b, Margalida and
Colomer 2012). However, since 2005, coinciding with

the application of restrictive sanitary policies, livestock

carcass availability has decreased progressively in the

study area. A monitoring program marking adult and

pre-adult individuals was carried out in the Pyrenees

from 1987 to 2011, which allowed modeling of the

resighting and survival probabilities in 106 marked

Bearded Vultures.

Data collection

The southern face of the Pyrenees has been intensively

monitored within the framework of the Species’

Recovery Plan in the Autonomous Communities of the

Basque Country, Navarra, Aragón, and Catalonia.

Here, programs to monitor population trends, breeding

parameters, and survival rates (including a specific

capture–mark–resighting subprogram) have been per-

formed.

Between 1994 and 2011, all known territories were

visited (2–3 visits/month) to search for signs of

occupancy (territorial and/or courtship activity, nest

arrangement/building), and to record reproductive

parameters. Observations began in September–October,

coinciding with the start of nest-building and sexual

activity (Bertran and Margalida 1999, Margalida and

Bertran 2000), and ended during fledging (June–Au-

gust). Nests were observed with the help of 20–603

telescopes and video cameras (Margalida et al. 2006).

During the egg-laying period, 14–20 focal pairs per year

were monitored daily until the dates of egg-laying were

determined. Egg-laying was confirmed when an incuba-

tion shift between parents was observed or when the nest

interior was visible. When the previously mentioned

methods failed, clutch size (a one-egg simple clutch vs. a

two-egg double clutch) was determined after confirming

a breeding failure and visiting the nest to recover the

remains. In this case, we only included data when entire

eggs were found or when the nest inspection was carried

out one or two days after breeding failure, to avoid

possible biases due to predation by Common Ravens

(Corvus corax) (Bertran and Margalida 2004). For the

analyses of breeding parameters, we defined productivity

as the number of chicks fledged per nesting pair and

fledging rate as the number of chicks fledged per pair

that successfully laid eggs.

During the study period, all dead Bearded Vultures

were recovered and their cause of death was determined

(see Margalida et al. 2008b, Margalida 2012). Samples

from Bearded Vultures found dead or injured were

analyzed by the Wildlife Forensics Laboratory in

Madrid, Spain. Poisoning was recorded when intention-

al exposure to a toxic substance was confirmed

(Margalida et al. 2008b). In order to analyze variations

in mortality, we used survival estimates by age classes

obtained through resighting and recoveries. From 1987

to 2011, a total of 106 individuals were monitored (Oro

et al. 2008; R. Heredia [Fundacı́on para la Conservacı́on

del Quebrantahuesos], unpublished data; A. Margalida,

unpublished data). Finally, in order to assess food
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availability, we calculated the food resources (bone

biomass) provided by wild and domestic ungulates,

taking into account Bearded Vulture dietary habits and

the presence and population trend of ungulate species in

the study area (Colomer et al. 2011, Margalida et al.

2011b). Considering that .70% of the diet of the species

is based on livestock (Margalida et al. 2009), we

obtained the biomass available (bone remains expressed

in megajoules) as a surrogate of food potentially

available. To assess food shortages related to carcass

disposal policies, we obtained data from the agricultural

insurance Spanish government agency Enesa (available

online)5 to calculate the proportion of domestic ungulate

carcasses that were destroyed (e.g., by incineration) and

thus not available to scavenging birds. Using these

official data, which can be considered a reliable picture

to assess the potential food available in the field, we

inferred the proportion of such destroyed domestic

carcasses collected from farms from those hypothetically

available to scavenging birds at feeding sites obtained

through censuses and mortality rates (for more details,

see Margalida and Colomer 2012).

Scenarios considered

Although the outbreak of bovine spongiform enceph-

alopathy began in 2001, the restrictive legislation forced

the closure of 80% of feeding stations (Donázar et al.

2009a, Cortés-Avizanda et al. 2010) and obliged the

collection of domestic ungulates to be destroyed. These

measures were not implemented effectively until 2005

(Donázar et al. 2009b, 2010, Margalida et al. 2010,

2012), when dead livestock were collected from farms

and most feeding stations (80%) were closed. Thus, we

considered the period 1994–2004 as the ‘‘before policy

implementation period’’ (noted as BPI) and 2005–2011

the ‘‘after policy implementation period’’ (noted as

API). During the BPI, remains of domestic ungulates

were present in the field and food availability was

considered sufficient to cover the energy requirements of

avian scavengers (Margalida et al. 2011b). However,

during API, the carcasses of domestic animals progres-

sively had to be collected from farms and destroyed in

authorized plants (Donázar et al. 2009b). The monitor-

ing of several regions suggested that .80% of remains of

Ovis/Capra were collected, and nearly 100% for the

remains of Bos/Equus.

Modeling resighting and survival probabilities

Marked birds at release (including radio-tracked and

not radio-tracked birds, i.e., birds with wing marks only)

were grouped considering their true age (for fledglings,

which represented 65% of marked individuals) and

plumage characteristics into seven age classes (from 1-

year-olds to older than 7 years; see details in Oro et al.

2008). In other words, each bird entered the database

with different ages, so time-since-marking equaled

different ages for each bird, depending on the age at

marking. To improve the reliability of our estimates

compared to the unistate modeling carried out by Oro et

al. (2008), we used a multi-event probabilistic frame-

work by combining the information obtained from

resights and recoveries (i.e., dead marked animals).

During the study, 36 recoveries of dead individuals were

obtained and this information was added to the capture–

recapture histories to inform the estimation of survival,

with probabilities of resighting and recoveries. Further-

more, the multi-event approach allowed us to consider

the capture heterogeneity resulting from young birds

visiting the supplementary feeding stations more fre-

quently than older birds (see Oro et al. 2008, Margalida

et al. 2011c). We did not model population-wide

survival, but because we covered most of the distribu-

tion range of the species in Spain and because the

nearest breeding areas are far away and have very small

breeding populations (e.g., the Alps), we can assume

that our local survival approached true survival. All

models were fitted using E-Surge software (Choquet et

al. 2009).

We tested the hypothesis that the reduction in the

availability of food resources in the ecosystem (as

consequence of a sudden reduction of domestic carcasses

in the field from 2005 and the closure of several feeding

stations) should decrease survival probabilities, espe-

cially those of juveniles and subadults, which are more

dependent on this food resource than are older birds

(Oro et al. 2008). Thus, we introduced age to test for

variations in survival, first with no specific trend, and

second following a trend but only for adults (as recorded

in a previous study from the same population; see Oro et

al. 2008), or having two categorical values: before and

after the application of the restrictive sanitary policy in

2005. This last model tested the hypothesis that survival

decreased due to reduced food availability. Models

testing potential effects of age (not necessarily showing a

trend, as in the previous models) grouped individuals

based on ecological knowledge of the species: youngest

age class ( juveniles, noted as 1 in models), immature

birds (2- and 3-yr-old birds, noted as 2_3 in models),

subadults (birds 4–5 yr old, noted as 4_5 in models), and

older, territorial age classes (i.e., birds at least 6 yr old,

noted as 6 in models). Other combinations of age classes

were also considered, for instance by grouping immature

and subadult age classes. Thus, we took the uncon-

strained model for survival as the starting model, which

considered time and age variations for this parameter,

whereas recapture and recovery probabilities varied only

with age, as recorded in a previous study on the same

population (Oro et al. 2008).

Field observations suggested that adults and sub-

adults were increasing their numbers at the remaining

supplementary feeding stations relative to the numbers

of juveniles, so we also tested whether the survival of

adult Bearded Vultures increased after food shortages.5 http://www.enesa.es
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Taking into account the study by Oro et al. (2008) and

the previous results obtained, we assessed the effects of
poisoning and food availability on adult and pre-adult

survival before and after 2005. We started by constrain-

ing the number of age classes for recapture probabilities

from the unconstrained model (model 15 in Table 1);
none of those models performed better, even considering

separately the recapture for juveniles and for the rest of

age classes grouped (model 14, Table 1; see also Table

A1 in the Appendix). We then kept recapture probabil-
ities changing for each age class separately when

modeling changes in survival. When we tested how a

model without time variations in survival performed

(i.e., survival changing only with age; see model 11), the
QAICc value showed that this type of model behaved

better and that the influence of time, if it existed, was

small (see also model 6, Table 1). We then tested

whether adult survival decreased with time due to an
increase in poison exposure, as found previously,

whereas the younger age classes had constant survival

(see, e.g., models 2, 9, and 13). One of those models

(model 2) performed very well and suggested that the

environmental conditions did not change in the last
years. Finally, we tested a set of models in which

survival changed categorically, taking two values (before

and after 2005, when most feeding stations were closed),

and differently for each age class. Some (but not all) of
those models performed well; for instance, model 3

suggested that the closure of feeding stations affected

not only adults but also younger age classes.

Notation and selection of models followed common

procedures in capture–recapture studies: the corrected
Akaike Information Criterion for small sample sizes

(QAICc) was calculated for each model and the model

with the lowest QAICc was considered to be the most

parsimonious, i.e., the model with the lowest number of
parameters necessary to explain the highest percentage

of the variance. Models differing in less than two points

in QAICc were considered statistically equivalent (e.g.,

Lebreton et al. 1992, Williams et al. 2001).

Statistical analysis

Statistical tests were performed in R2.15.2 (R

Development Core Team 2012). To assess if egg-laying

TABLE 1. List of the 15 models explaining Bearded Vulture (Gypaetus barbatus) survival with lowest QAICc values.

No. Np Deviance QAICc Di wi Hypothesis tested on survival by time and age

1 28 921.148 979.148 0 0.41 Only two values: before and after 2005 different for juveniles (1y)
and immatures and subadults (2y_5y); for adults, trend with time.

2 28 922.572 980.636 1.488 0.19 Temporal trend in survival only for adults (.5y old); the two other
age classes considered have constant survival and differ for
juveniles (1y) and immatures and subadults (2y_5y).

3 28 923.76 981.823 2.675 0.11 Only two values: before and after 2005, but different for juveniles,
immatures, and subadults (2y_5y) and adults.

4 28 924.045 982.109 2.961 0.09 Two values: before and after 2005, but only for adults; other age
classes had constant survival but different for juveniles (1y) and
immatures and subadults (2y_5y).

5 28 924.561 982.624 3.476 0.07 Two values: before and after 2005, but only for adults; other age
classes had constant survival (1y_5y).

6 25 931.319 982.965 3.817 0.06 Constant (all age classes had the same survival).
7 27 928.733 984.625 5.477 0.03 Two values: before and after 2005, but only for adults; other age

classes had the same constant survival.
8 27 928.757 984.675 5.527 0.03 Only two values: before and after 2005, but different for juveniles,

immatures, and subadults (1y_5y) and adults.
9 31 921.023 985.553 6.405 0.01 Only survival of old-subadults and adults (.5y old) had a temporal

trend; other age classes had constant survival and differed for
each age.

10 29 930.044 990.258 11.11 0.00 Only two values: before and after 2005; different for juveniles (1y)
and immatures and subadults (2y_5y); for adults, a temporal
trend before 2005 and another temporal trend (different slope)
after 2005.

11 41 904.715 991.165 12.017 0.00 Change only with age.
12 29 931.077 991.291 12.143 0.00 Only two values: before and after 2005, but different for juveniles

(1y) and immatures and subadults (2y_5y); for adults, survival
had a temporal trend until 2006 and then remained constant.

13 30 929.903 992.272 13.124 0.00 Only adult survival changes with time; other age classes have
constant survival; grouped differently for juveniles (1y),
immatures (2y_3y), and subadults (4y_5y).

14 84 810.319 997.854 18.706 0.00 Change with time and age, but recapture equal for all ages except
for juveniles.

15 94 797.367 1010.411 31.263 0.00 Change with time and age.

Notes: Age of individuals was grouped into eight age classes, the last grouping 6-yr-old birds and older (see Methods). Models
referring to 2005 deal with a tipping point in that year, after which API were in short supply, probably affecting survival. Models
considering different groupings of age classes were noted by their first age class considered; for instance, a model grouping 2- and 3-
yr-old birds was noted as 2y_3y. Model structures were decided following methods described in Genovart et al. (2012). Np is the
number of identifiable parameters; Di is the QAICc difference value between the best model and model i; wi is the weight of model i.
A complete list of models is shown in the Appendix: Table A1.
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dates varied among years, we used GLMs (general linear

models) with Gaussian error distribution and identity

link function. The correlations between the different

variables were carried out using the Spearman rank

coefficient. We used nonparametric tests such as the

Mann-Whitney U test for independent samples and the

Wilcoxon test for matched pairs to compare the values

of variables before (BPI) and after policy implementa-

tion (API) periods.

RESULTS

Percentage of breeding pairs

Between 1994 and 2011, we monitored 510 breeding

attempts with a total of 298 clutches being laid. The

average percentage of pairs that annually began breeding

was 58.7% 6 11.6% (mean 6 SD, range 41.9–70.6%, n¼
18) with a similar trend between years (rS¼�0.094, P .

0.05, n¼ 18; Fig. 1). The percentage of pairs that started

breeding before and after policy change were not

statistically different (for BPI, 57.2% 6 14.9%, range

41.9–70.6%, n¼ 11; for API, 61% 6 18.4%, range 51.5–

69.2%, n¼ 7; Wilcoxon test, W¼ 28, P . 0.05).

Laying dates

We documented egg-laying dates on 258 occasions,

without significant differences between years (GLM, t¼
1.36, P ¼ 0.174; Fig. 2). However, when we compared

egg-laying dates before and after policy change, we

found a significant delay following reduction in food

supplies (for BPI, average 8 January, range 8 December–

1 March, n¼ 135; for API, average 12 January, range 11

December–26 February, n ¼ 127; t ¼ 2.44, P ¼ 0.016).

Clutch size

We observed a total of 104 clutches of which 59

(56.7%) consisted of a single egg (the remainder were

two-egg clutches). The percentage of single-egg clutches

increased through time (rS ¼ 0.564, P ¼ 0.018; Fig. 3),

and differed before and after policy change (single-egg

clutches, for BPI, 39.37%, n ¼ 46; for API, 69.59%, n ¼
58; v2 ¼ 5.99, df ¼ 1, P ¼ 0.014).

Productivity and fledging rate at successful nests

Productivity and fledging rate decreased slightly

through time (for productivity, rS ¼�0.389, P ¼ 0.110;

for fledging rate, rS ¼�0.144, P ¼ 0.568; Fig. 4). When

we compared differences for both variables between

periods, both values decreased before policy changes,

although the differences were not statistically significant

for productivity (for BPI, 0.37 6 0.09 chicks fledged by

controlled pair [mean 6 SD], range 0.33–0.42, n ¼ 11;

for API, 0.29 6 0.08, range 0.26–0.31, n¼ 7; Wilcoxon

test, W ¼ 58.5, P ¼ 0.07) or for fledging rate (for BPI,

0.54 6 0.11 chicks fledged by a pair with clutches, range

0.49–0.61, n¼ 11; for API, 0.46 6 0.10, range 0.41–0.52,

n ¼ 7; Wilcoxon test, W ¼ 56, P ¼ 0.123).

Mortality and food supplies

Between 1994 and 2011, we documented a total of 65

cases of mortality. Survival decreased with time in all

age classes (adults, rS¼�0.60, P¼ 0.0091; subadults, rS
¼�0.56, P¼0.0147; juveniles, rS¼�0.48, P¼0.0418, n¼
18). Survival differences in juvenile and adult age classes

did not coincide with policy change (for juveniles, BPI

survival is 97.5% per year, n¼ 11; API survival is 98.1%

FIG. 1. Interannual variation (from 1994 to 2011) in the percentage of Bearded Vulture (Gypaetus barbatus) territories that had
breeding pairs.

FIG. 2. Interannual variation (from 1994 to 2011) in egg-laying dates in the Bearded Vulture, where 0 ¼ 1 December.
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per year, n ¼ 7; Wilcoxon test, W ¼ 52, P ¼ 0.246; for

adults, BPI survival is 97.8% per year, n ¼ 11; API
survival is 94.6% per year, n¼ 7; Wilcoxon test, W¼ 57,

P ¼ 0.104), but did for subadults (BPI survival, 92.0%
per year, n ¼ 11; API survival, 90.2% per year, n ¼ 7;

Wilcoxon test, W¼ 68, P¼ 0.0059). This coincides with
a progressive decrease in the number of carcasses

provided by domestic ungulates from 2003 (rS ¼
�0.909, P ¼ 0.0001, n ¼ 18; Fig. 5).

Effects of illegal poisoning and reduced food supplies on

adult and pre-adult survival

The model garnering the greatest support (model 1)
showed that the closure of some feeding stations slightly

changed survival and did so differently for juveniles (the
age class exploiting feeding stations with higher fre-

quency) and immature and subadults, whereas adults
showed a temporal decline in survival over the study.

Survival of juveniles decreased slightly from 97.5% (SE¼
1.8%) to 95.7% (SE ¼ 1.6%), that of immatures and

subadults from 91.7% (SE¼1.3%) to 90.6% (SE¼1.8%),
and adult survival decreased from 97.5% (SE¼ 1.4%) in

1987 to 90.1% (SE¼ 1.7%) in 2011 (adult estimates from

model 14, Table 1).

DISCUSSION

Recent changes in European health regulations

provoked apparent contradictions between the applica-
tion of sanitary and conservation policies (i.e., eliminat-

ing corpses to avoid the presence of carrion in the field
vs. conserving a scavenger species; Donázar et al. 2009b,

Margalida et al. 2010). Implementation of the sanitation
policy appears to have undermined conservation goals,

as evidenced by, for example, an annual decrease in

breeding success, reduced population growth, increased
mortality in young age classes, and changes in diet and

behavior of Eurasian Griffon Vultures (Donázar et al.
2009a, 2010, Zuberogoitia et al. 2010, Margalida et al.

2011a). Our results confirm these observations with
empirical, long-term data on another vulture species.

After sanitation policies were enacted, the threatened
Pyrenean Bearded Vulture population had reduced

survival, especially of subadult individuals, and adults
bred later and less successfully than prior to policy

FIG. 3. Interannual variation (from 1995 to 2011) in the clutch size in the Bearded Vulture in the Pyrenees. Black columns are
the percentage of clutches that are double (two-egg clutches); open columns are the percentage that are simple (one-egg clutches).

FIG. 4. Interannual variation (from 1994 to 2011) in the number of young fledged from all monitored nests (productivity, solid
line) and number of young fledged from successful nests (fledging rate, dashed line) in the Bearded Vulture.
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implementation. In this case, additional conservation

actions, such as supplementary feeding, can buffer the

negative effects of policy change on demographic

parameters (Oro et al. 2008). However, because supple-

mentary feeding can also have detrimental effects

(Carrete et al. 2006a, Robb et al. 2008), this tool should

only be used as a precautionary measure until the

recovery of the previous scenario (i.e., availability of

domestic carcasses in the field) is achieved.

According to our results, reduction of food supply

does not affect the percentage of pairs that start

breeding, so the decision to breed or not was not

influenced by the change in carcass disposal legislation.

Among the European scavenger guild, Bearded Vultures

seem to be the least sensitive to the effects of food

limitations (Margalida and Colomer 2012). Their

specialized diet based on bone remains implies a

foraging resource for which only conspecifics can

compete; it lasts 10 times longer than meat remains

and is very nutritious, having an advantage compared to

a meat-based diet (Houston and Copsey 1994, Marga-

lida 2008). Thus, although the percentage of pairs that

do not start laying annually is important (range

29.4�58.1%), the decision to start breeding, which could

be influenced by the physical condition of the individual

(Jenouvrier et al. 2005), appears not to compromise the

reproduction of Bearded Vultures. This suggests that, in

this isolated population, several buffering mechanisms

(e.g., changes in the structure of breeding age, low

dispersal movements) may contribute to maintain

stability in the percentage of pairs that start laying

(Sergio et al. 2011, Oro et al. 2012, Margalida et al.

2013). In this sense, the carcass disposal policy does not

seem to affect population movements because pre-adult

individuals remained in the study area without greater

pre-dispersal movements (Margalida et al. 2013). With

respect to non-natural mortality, although mortality

factors affect mostly adult age classes (Margalida et al.

2008b, Oro et al. 2008), they seem to play no role in the

start of breeding. Thus, buffering capacity through

ecological and behavioral processes such as positive

feedback from conspecific attraction could explain this

regular pattern (Margalida et al. 2011b, Oro et al. 2012).

With respect to pre-adult and adult survival, although

the closure of feeding stations and the widespread

reduction of food resources suggest a decrease in both

age class groups, their effects were not very pronounced.

This could be explained because specific feeding stations

for Bearded Vultures provided only with bone remains

continued functioning after the application of health

regulations; juveniles are the age class most dependent

on these sites. Thus, the avian scavenger guild was

limited by reduced food availability after the closure of

several feeding stations and the destruction of domestic

carcasses (Cortés-Avizanda et al. 2012), but their effects

on Bearded Vultures were partially minimized with the

specific, predictable feeding stations present.

During the last six years, the proportion of double

clutches seemed to decrease in parallel with laying dates.

Large avian species often show obligate brood reduction

(two eggs laid, but only one chick survives) in which

siblicide (when .90% of last-hatched chicks die; Simmons

1988) may occur, even when food supplies are abundant.

The second egg thus serves as insurance against loss of the

first egg from infertility, predation, or damage, rather than

as a means of rearing two chicks (Stinson 1979, Anderson

1990,Mock et al. 1990).According toWinkler et al. (2002),

there is a strong effect of laying date on clutch size, and

earlier breedingmay lead to larger clutch sizes. An increase

of food resources could increase clutch size in facultative-

fratricide species (Korpimaki and Wiehn 1998), but in

obligate fratricide species such as Bearded Vultures, the

second egg seems to be an adaptive mechanism serving as

an insurance egg to avoid breeding failure if the first egg

does not hatch (Stinson 1979,Margalida et al. 2004). Thus,

if the second egg is a security egg, the reversed trend in two-

egg clutches could, in part, explain the increase in breeding

failures and, thus, the decline in breeding parameters

FIG. 5. Interannual variation (from 1994 to 2011) in the food biomass (bones) provided by domestic ungulates and adult
survival of the Bearded Vulture. Biomass available was estimated through censuses and mortality rates of wild and domestic
ungulates, taking into account the proportion of domestic ungulate carcasses that were destroyed and thus not available to
scavenging birds (for more details, see Methods).
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observed during this period. In several species, including

the Bearded Vulture, it seems that single-egg clutches are

related to old or young females (Frey et al. 1995).

According to our results, the increase of single-egg clutches

could be related to a reduction in food supply or the stress

that changes in food availability could provoke in

individuals (i.e., increasing foraging effort or agonistic

interactions as a consequence of a greater competence for

the resources) and the effects of mate loss with the

incorporation of less experienced individuals.

The conservation implications of this work suggest

that anthropogenic activities modifying habitat quality

through human health regulations (i.e., a reduction in

food availability) can alter demographic parameters and

increase the probability of illegal poison bait consump-

tion, thus increasing non-natural mortality. The shifts in

demographic parameters can have important conserva-

tion consequences, being necessary to adopt preventive

mitigation measures on targeted species. As a result,

preventive management measures such as supplementa-

ry feeding can be effective until more flexible sanitary

legislation allows increased trophic availability, mini-

mizing the detrimental effects that food shortages and

illegal poisoning can cause.
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