Effects of irrigation on phosphorus in soil, soil microbes and plants

Landwehr A.1,2, Oberson A.2, Lessard-Therrien M.3, Humbert J.-Y.3 Arlettaz R.3 and Huguenin-Elie O.1

¹ Agroscope CH-8046 Zürich (www.agroscope.ch); ² ETH Zürich, CH-8315 Lindau; ³ University of Bern, CH-3102 Bern

Objective

Assess the mid-term effects of irrigation on soil P availability, the size of the soil microbial P pool and plant P nutrition in semi-dry grasslands.

Hypothesis

Fig. 1. Expected irrigation effect on P turnover in the soil-plant system: Greater P exchange and plant uptake.

Methods: Factorial field experiment

• Treatments:		Not fertilized	Fertilized	
	Not Irrigated	I ₀ F ₀	I ₀ F ₁	
	Irrigated	I₁F₀	I₁F₁	

- 5 years of contrasted irrigation and fertilisation
- 11 hay meadows in an inner-alpine valley
- Fertilization: liquefied organic manure
- Irrigation: 20 mm weekly sprinkler irrigation from May to mid-September

Fig. 2. Irrigation promoted herbage growth in summer.

Results

Table 1. Effect of irrigation and fertilization on biomass, plant P content, P nutrition index (PNI), resin extractable P and soil microbial P content in spring succeeding 5 years of contrasted treatments.

Treatment / Effect	Biomass (t DM ha ⁻¹)	Plant P (g kg ⁻¹ DM)	PNI	Resin P (mg kg ⁻¹ soil)	Microbial P (mg kg ⁻¹ soil)
I ₀ F ₀	1.36	2.2	51	1.5	88
I₁F₀	1.40	2.3	51	1.4	95
I_0F_1	2.03	3.1	78	7.4	88
I ₁ F ₁	1.74	3.0	79	5.2	94
Mean SD	0.48	0.5	13	2.3	18
Irrigation Effect	ns	ns	ns	ns	ns
Fertilization Effect	***	***	***	***	ns

Fig. 3. Relationship between the **P nutrition index** of the grass fraction and the **resin P** in the topsoil layer (0-5 cm) after 5 years of contrasted irrigation and fertilization.

Conclusions

In the mid-term, **irrigation** during the drier season **did not affect soil P availability**, the size of the soil microbial P pool, **nor plant P nutrition** in semi-dry mountain grasslands.

→ No correction factor necessary for irrigated compared to not irrigated grassland to estimate P fertilization requirement per unit of herbage yield

